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1 Introduction

We study situations in which the leading firm causes a positive externality on the quality

of the good produced by its competitors. For instance, the decision of a firm to release

its patents in order to increase the overall market share of the industry by increasing the

degree of compatibility among all competitors. Recently, this has been the strategy taken

by Tesla Motors, the manufacturer of electric vehicles (EVs). Its technology for electricity

storage allows the Tesla Model S to have a range of around 200 miles per battery charge,

significantly above that of its competitors, and their technology used in their network of

recharging stations allows Tesla car owners to fully recharge the battery in about one hour,

much below that of its competitors. In June 2014, Elon Musk, the CEO of Tesla Motors,

announced that they were releasing most of the company’s patents because he said “We

believe that Tesla, other companies making electric cars, and the world would all benefit

from a common, rapidly-evolving technology platform.”1 Patent releasing changes the trade-

off between market dominance (of the leader releasing its patents) and overall industry growth

(currently the market share of EVs is very small). Most likely, what the CEO of Tesla Motors

expects is that the industry converges to the same technology standard for recharging stations

so that the network expands for all EV users, which will increase the market share of EVs,

including Tesla Motors’ own market share.

In a more general framework, we think of this patent release strategy as a case of a

positive externality on the quality of the competitors. Our research goal is to understand

how the presence of this positive externality −due either to a firm’s unilateral decision or

to regulation− affects the leading firm and the industry overall. To that end, we model the

difference between the leading and lagging firms by assuming that the return to investment

in quality differs across firms. That is, for a given level of investment, one firm has a higher

probability to raise the quality of the good it produces. We show that such a model can gen-

erate different types of long-run market configurations (market collapse, market dominance

by either firm, duopoly, and combinations of these cases). We find the array of possible

market structures that can arise from this game for different parameter values, including the

case of dominance by the lagging firm when we consider a patent release situation modeled

as an externality on quality proportional to the competitor’s quality,

Even in the absence of positive externalities on quality, firms have different likelihoods

1https://www.tesla.com/blog/all-our-patent-are-belong-you?
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of success of investment. Recently, Goettler and Gordon (2011) have estimated a dynamic

quality-ladder model for the computer processors industry. They find evidence for hetero-

geneity in the likelihood of success of investment, which can explain differences in the levels of

investment and ultimately differences in the levels of quality between the goods.2 Motivated

by this finding, we ask the following question. What is the effect of heterogeneity in firms’

ability to invest in quality on long-run market configurations? This heterogeneity can be

initially driven by intrinsic characteristics of the firms or by a quality externality such as a

patent release action. To answer this question, we adapt the quality ladder model described

in Ericson and Pakes (1995) and the algorithms to numerically solve for its equilibrium such

as the one described in Pakes and McGuire (1994) and in a particular case in Levhari and

Mirman (1980) to the case of heterogeneous likelihood of success of investment.

Another example of estimation of this class of models is Gowrisankaran and Town (1997).

They consider two types of hospitals, for-profits and non-profits. The ratio of the number

of these two types of hospitals is endogenous in their model. The parameter governing the

probability of success of investment is restricted to be the same for the two hospital types,

and yet, the observed market configurations in the data are not symmetric.3

We restrict attention to the quality-ladder model without entry or exit. This is not a

strong assumption since we allow for quality levels of zero which in turn yield to zero demand,

meaning that the firm producing such good acts as if it had exited the market. That however

does not prohibit the same firm to become active again if it achieves to increase quality

to a positive level in the next period. We also note that in our motivating example from

Goettler and Gordon (2011), they do not consider entry and exit since the industry they

study does not exhibit such behavior during the time window in their data.4 In our second

motivating example on the estimation of a quality-ladder model, Gowrisankaran and Town

(1997) consider the possibility of entry and exit, however all hospitals belong to one of two

firm types, and thus if all firms of one type exit, this is equivalent in our two-firm model to

having quality zero for one type of firm.

2In their adaptation of the Ericson-Pakes model, the source of this heterogeneity in the model is twofold:
specific parameters for each firm and the quality distance between the leader and the follower. Specifically,
they find a parameter value for the likelihood of success of investment of 0.0010 for Intel and 0.0019 for
AMD. The estimated parameters are different for each firm, which captures the observed heterogeneity of
firm dominance in their data.

3In the data, this ratio was observed to be 16, meaning that the for-profits hospitals dominate the market.
That parameter of the likelihood of success of investment is estimated to be 0.51, well within our parameter
space specification.

4Goettler and Gordon (2011) pp. 1151.
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Heterogeneity in the quality-ladder dynamic models has been studied in the context of

capacity games. Besanko and Doraszelski (2004) conclude that asymmetries of firm size can

be due to the effects of price competition which in turn lead to long run distributions that

exhibit positive probabilities on outcomes that represent only one firm surviving.5 Their

analysis keeps parameters symmetric across the two firms. We also find such configurations

in cases of symmetric firms, but those configurations can arise from other parameter combi-

nations as well. The asymmetries in price competition in their model arise because of small

asymmetries in capacity accumulation that occur accidentally which makes one firm slightly

dominant over the other, making the other firm to give up if investment is highly reversible.

In Borkovsky et al. (2010) and Borkovsky et al. (2012), it is shown that the dynamic quality-

ladder model can exhibit multiplicity of equilibria even in the absence of entry or exit if the

investment is highly permanent. We take a different approach and allow firms to have differ-

ent parameters in their investment success function and study the long-run distribution over

the quality space given the unique equilibrium policies.6 We abstract from collaborations in

R&D that could also lead to externalities.7

Our analysis shows that the dynamic quality-ladder model for two firms can generate,

in the long-run, different probability distributions over the space of market configurations

depending on parameter values and that in some cases these distributions are multi-modal.

If that is the case, we argue that this can be interpreted as a positive probability that more

than one market structure is possible for the same set of parameter values. We assess how

each of the model parameters affects the results.

We find that asymmetries in the likelihood of success of investment can have relevant

effects on long-run market configurations which shows the richness of the baseline model.

We also find that changes in the depreciation rate can significantly affect the number and

types of long-run market configurations. More specifically, the presence of higher depreciation

rates increases the likelihood of market collapse and market dominance at the expense of the

probability of duopoly. In our analysis of the model with externalities, we find that even

though the externality may be beneficial to decrease the outside good market share, it could

harm the leader and allow the lagging firm to dominate the market if the asymmetry in the

5This behavior was not found under quantity competition.
6In Figure 5 from Borkovsky et al. (2010), they provide evidence on the existence of multiple equilibria

for depreciation rates below 0.1. Our analysis uses depreciation rates above or equal to that level and we
check for potential multiplicity of equilibria solving the game in consecutive finite time horizons versions of
the model a la Levhari and Mirman (1980).

7See Samano et al. (2017).
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externality is above certain level and the return to investment is relatively low. Therefore,

releasing patents can eliminate the advantage of the leader for a certain range of industry

parameters. This is utterly important since it shows that sharing knowledge to competitors

in the context of quality externalities is not always harmful.

This paper also has implications for the simulation of this type of models. Typically, one

obtains data from an industry, say in a duopoly, and assume this is the equilibrium. Then a

set of parameters is obtained using a dynamic model of competition that belongs to the class

of models we analyze here. We show that it is possible that when simulating the industry

with the estimated parameters, additional market structures may arise in the long-run. If we

only report expected values for the different outcomes of the model, it is possible that salient

information is being masked since the multiplicity of modes in the probability distribution

may be eroded.

The remainder of this article has the following structure. Section 2 introduces the model.

In Section 3 we provide computational details, the parametrization of the model, and the

long-run distributions. Section 4 presents the main results. We discuss further connections

to the literature and conclude in Section 5.

2 Model

In this section, we extend the Ericson-Pakes dynamic quality-latter model to the case in

which each firm’s valuation of the good sold depends not only on its own quality level, but

is also potentially influenced by the quality level achieved by the other firm. For instance,

in the case of the electric car industry, quality refers to the availability and effectiveness

of the network of recharging stations. An improvement in the size or the effectiveness of

this network translates into an improvement in quality and thus an increase in consumers’

valuation for electric cars. There are two possible cases to study.

1. No externalities. Suppose that there is no compatibility among the different firms.

Then, an improvement in the quality of one firm affects only consumers’ valuation for

its own good.

2. Externalities. Suppose that there is imperfect compatibility. For instance, one firm’s

electric cars can recharge in any recharging stations. Then, an improvement in the

quality of one firm’s network of recharging stations (i.e., a higher quality) affects (asym-

metrically) consumers’ valuation for all goods in that industry.
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To study the long-run implications of such an industry, we must take account of hetero-

geneity. There are two kinds of heterogeneity worth considering.

1. Quality externality. The first layer of heterogeneity concerns the link between quality

and consumers’ valuation. For instance, the leading firm might not benefit from quality

improvement of the lagging firm as much as the lagging firm would benefit from quality

improvement on the part of the leading firm. This is represented by the parameter κ.

below.

2. Likelihood of success of investment. The technological ability to improve quality varies

across firms, i.e., some firms are more capable than others of turning investment into a

successful upgrade in quality. This is represented by the parameter α. below.

We now provide a detailed description of the Ericson-Pakes dynamic quality latter model

under the presence of these two sources of heterogeneity. For simplicity, we restrict attention

to the case of two firms and abstract from entry or exit.8

Demand. We consider a differentiated-product market in which two firms compete à

la Bertrand as well as invest to improve the quality of their products. For j = 1, 2, let

ωj ∈ {0, 1, 2, ...,M} be firm j’s quality of the product out of M possible values. Given

qualities {ω1, ω2} and prices {p1, p2}, firm j’s demand is

D (pj, p3−j;ωj, ω3−j) = m
egj(ωj ,ω3−j)−λpj

1 + egj(ωj ,ω3−j)−λpj + eg3−j(ω3−j ,ωj)−λp3−j

where m > 0 is the size of the market and

gj(ωj, ω3−j) =


−∞, ωj + κjω3−j ≤ 0

ωj + κjω3−j, 1 ≤ ωj + κjω3−j < ω∗

ω∗ + log(2− exp(ω∗ − ωj − κjω3−j), ω∗ ≤ ωj + κjω3−j ≤M

(1)

maps firm j’s product quality into consumer’s valuation. The parameter ω∗ ∈ (0,M ] reflects

the level of quality after which there is a degree of satiation.9 Expression (1) introduces the

type of heterogeneity in the model via the externality in quality. That is, consumers’ valuation

8As discussed in the introduction, one of our two empirical examples in the literature (Goettler and
Gordon (2011)) does not consider entry or exit. Moreover, we allow for quality levels of zero and the demand
function in this case becomes null, this is equivalent to exiting the market.

9The last two lines in the specification of the function g reflect a satiation effect at high quality levels
(above ω∗). This creates decreasing marginal returns on the utility function. The derivative of g is the same
from the left and from the right of ω∗.
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for good j depends on the quality achieved by firm 3−j, i.e., ω3−j. The parameter κj governs

the influence of firm 3−j. If κ1 = κ2 = 0, we obtain the baseline model without externality.10

When κ. > 0 and increases, it reflects a greater positive influence of the competitor’s quality

on the firm’s good. Differences between κ1 and κ2 mean that one firm benefits more from

the quality externality than the other one. If κj < 0 there is a negative effect on the quality

of good j from quality improvements from the other firm. Since our main motivation in this

paper is a patent release, we concentrate on the case of positive externalities.

Profits. Firm j’s instantaneous profits are

π (pj, p3−j;ωj, ω3−j) = D (pj, p3−j;ωj, ω3−j) (pj − c)

where c > 0 is the constant marginal cost of production, same across firms. Because market

competition has no effect on the dynamics, the pricing game is static. Let Π (ωj, ω3−j) be

firm j’s instantaneous profit corresponding to the static Bertrand game.11

Investment. Each period, firm j invests an amount xj ≥ 0 intended to improve prod-

uct quality. The process for quality is stochastic and subject to an industry-wide shock.

Specifically, firm j’s product quality evolves stochastically as

ω′j|ωj = min{max{ωj + τj + η, 0},M}

where τj is a firm-specific shock and η is an industry-wide depreciation shock. Each random

variable is binary. The firm-specific shock η has support {0, 1} and depends on the amount

of investment, i.e.,

Pr(τj = 1|xj) =
αjxj

1 + αjxj
≡ φj(xj)

is firm j’s probability of success conditional on investing xj ≥ 0. Here, αj > 0 is specific to

firm j, which is our second source of parameter heterogeneity. The industry-wide depreciation

shock has support {−1, 0} such that

Pr(η = −1) = δ ∈ [0, 1]

10Note also that our specification in (1) is similar to Borkovsky et al. (2012) in that ωj = 0 drives firm
j’s demand to zero. Although entry or exit are not explicitly modeled, the state (ω1, ω2) = (0, 0) essentially
leads to a temporary collapse of the market. We call it a temporary collapse since firms can still successfully
invest in the next period to go back into the game. In other words, it is possible that for a particular set of
parameters even if (ω1, ω2) = (0, 0), firms’ optimal policy functions are positive at that state.

11That is, for j = 1, 2, Π (ωj , ω3−j) = D
(
p∗j , p

∗
3−j ;ωj , ω3−j

)
(p∗j−c) where the pair {p∗1, p∗2} is the Bertrand

equilibrium defined as p∗j = arg maxpj>0Dj

(
pj , p

∗
3−j ;ωj , ω3−j

)
(pj−c). For all {ω1, ω2}, there exists a unique

Bertrand-Nash equilibrium (Caplin and Nalebuff (1991)).
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is the probability of quality depreciation.12

Value Function. Before proceeding with the definition and characterization of the

equilibrium, it is useful to write down the firm’s value function taking as given the behavior

of the other firm. Specifically, for j = 1, 2, given x3−j, firm j’s infinite-horizon value function

satisfies

vj (ωj, ω3−j) = max
xj≥0

{
Π (ωj, ω3−j)− xj + βE[vj(ω

′
j, ω

′
3−j)|ωj, ω3−j, xj, x3−j]

}
where a prime sign indicates a variable in the subsequent period and the expected continua-

tion value function is written as

E[vj(ω
′
j, ω

′
3−j)|ωj, ω3−j, xj, x3−j]

= φj(xj)φ3−j(x3−j) ·
(
δvj (ωj, ω3−j) + (1− δ)vj

(
ω+
j , ω

+
3−j
))

+ φj(xj)(1− φ3−j(x3−j)) ·
(
δvj
(
ωj, ω

−
3−j
)

+ (1− δ)vj
(
ω+
j , ω3−j

))
+ (1− φj(xj))φ3−j(x3−j) ·

(
δvj
(
ω−j , ω3−j

)
+ (1− δ)vj

(
ωj, ω

+
3−j
))

+ (1− φj(xj))(1− φ3−j(x3−j)) ·
(
δvj
(
ω−j , ω

−
3−j
)

+ (1− δ)vj (ωj, ω3−j)
)

(2)

with

ω+
j ≡ min{ωj + 1,M}, (3)

ω+
3−j ≡ min{ω3−j + 1,M}, (4)

ω−j ≡ max{ωj − 1, 0}, (5)

ω−3−j ≡ max{ω3−j − 1, 0}. (6)

Given an initial state (ωj, ω3−j) , expression (2) summarizes all possible changes in the states

corresponding to investment levels (xj, x3−j).

Equilibrium. We restrict attention to Markov-perfect equilibrium (MPE) in pure strate-

gies. The pair {X1 (ω1, ω2) , X2 (ω2, ω1)} is an equilibrium if, for j = 1, 2, given X3−j(ω3−j, ωj)

Xj(ωj, ω3−j) = arg max
xj≥0
{Π (ωj, ω3−j)− xj

+βE[Vj(ω
′
j, ω

′
3−j)|ωj, ω3−j, xj, X3−j(ω3−j, ωj)]

}

12The specific values for αj we use in our simulations lie well within those in the literature (Goettler and
Gordon (2011), Gowrisankaran and Town (1997), Borkovsky et al. (2010)).
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where for any (ωj, ω3−j) ∈ {0, 1, ...,M}2, the value function satisfies

Vj (ωj, ω3−j) = Π (ωj, ω3−j)−Xj(ωj, ω3−j) (7)

+ βE[Vj(ω
′
j, ω

′
3−j)|ωj, ω3−j, Xj(ωj, ω3−j), X3−j(ω3−j, ωj)] (8)

where E[Vj(ω
′
j, ω

′
3−j)|ωj, ω3−j, Xj(ωj, ω3−j), X3−j(ω3−j, ωj)] has the same form as equation

(2).

From the first order condition we obtain for j = 1, 2,

Xj(ωj, ω3−j) = max

{
−1

αj
+

√
β

αj

√
α3−jX3−j(ω3−j, ωj)∆j + Ψj

1 + α3−jX3−j(ω3−j, ωj)
, 0

}
(9)

when
α3−jX3−j(ω3−j ,ωj)∆j+Ψj

1+α3−jX3−j(ω3−j ,ωj)
≥ 0 and Xj(ωj, ω3−j) = 0 otherwise. Here, using (3) - (6),

∆j ≡ δ
[
Vj (ωj, ω3−j)− Vj

(
ω−j , ω3−j

)]
+ (1− δ)

[
Vj
(
ω+
j , ω

+
3−j
)
− Vj

(
ωj, ω

+
3−j
)]
,

Ψj ≡ δ
[
Vj
(
ωj, ω

−
3−j
)
− Vj

(
ω−j , ω

−
3−j
)]

+ (1− δ)
[
Vj
(
ω+
j , ω3−j

)
− Vj (ωj, ω3−j)

]
.

2.1 Strategic Complementarity and Substitutability in Investment

From the first order condition we can also obtain the rate at which firm j’s investment changes

with respect to the other firm’s level of investment:

∂Xj

∂X3−j

∣∣∣∣
(ωj ,ω3−j)

=
β

α3−j

(1+α3−jX3−j(ω3−j ,ωj))2
(∆j −Ψj)

2(1 + αjXj(ωj, ω3−j))
.

All the factors in that expression are always positive except for the term ∆j−Ψj. Therefore,

we would observe strategic substitutes in investment if ∆j − Ψj < 0 and complements if

∆j − Ψj > 0. The sign of this term depends on the degree of concavity of V , which in turn

depends on its initial condition: the static profits, which is the only object that contains the

information on the externality. We are unable to determine the exact mechanism by which

the level of the externalities changes the curvature of this function but as explained in Section

4, we do not find evidence for strategic complements. This also suggests that there cannot

be multiple solutions to the investment problem at each time period since the two reaction

curves are decreasing and therefore they can only intersect each other at most once. If both

reaction curves were increasing and concave, it would be possible to have more than one

9



intersection. A simple inspection of the second derivative of the reaction function indicates

that this could occur if αj is very large and ∆j −Ψj < 0.13

3 Computation and Parametrization

We use the Pakes-McGuire (PM) algorithm to numerically solve for {X1 (ω1, ω2) , X2 (ω2, ω1)}
and {V1 (ω1, ω2) , V2 (ω2, ω1)}. Since firms can be heterogeneous, i.e., α1 6= α2 and κ1 6= κ2,

the algorithm consists of iterating on the best response operators until convergence is reached.

Specifically, at the initial iteration τ = 0, we set

{X0
1 (ω1, ω2) , X0

2 (ω2, ω1)} = {0, 0} ,

for all combinations of states (ω1, ω2) and the corresponding value functions

{V 0
1 (ω1, ω2) , V 0

2 (ω2, ω1)} = {Π (ω1, ω2) ,Π (ω1, ω2)}.

For iteration τ = 1, 2, ..., given {Xτ−1
1 (ω1, ω2) , Xτ−1

2 (ω2, ω1)} and

{V τ−1
1 (ω1, ω2) , V τ−1

2 (ω2, ω1)}, we construct Xτ
1 and Xτ

2 according to the reaction function

given by (9) where the policy functions on the right hand side of that equation and the terms

that depend on value functions are all indexed by the previous time period, that is Xτ−1
j and

V τ−1
j .

Moreover, the value functions are defined by equation (7) and updated as follows:

V τ
1 (ω1, ω2) = Π (ω1, ω2)−Xτ

1 (ω1, ω2) + βE[V τ−1
1 (ω′1, ω

′
2)|ω1, ω2, X

τ−1
1 (ω1, ω2), Xτ−1

2 (ω2, ω1)],

V τ
2 (ω2, ω1) = Π (ω2, ω1)−Xτ

2 (ω2, ω1) + βE[V τ−1
2 (ω′2, ω

′
1)|ω2, ω1, X

τ−1
2 (ω2, ω1), Xτ−1

1 (ω1, ω2)].

The algorithm stops when some convergence criterion for the value functions and the policy

functions is met.

In the PM algorithm, the computed levels of investment at each iteration do not neces-

sarily constitute an equilibrium since the best responses (in terms of investment) at iteration

τ are in reaction to the investments computed at iteration τ − 1. However, stationary points

of such iterations are MPEs. In addition to the PM algorithm, we also apply the algorithm

suggested by Levhari and Mirman (1980) (LM) in a resource extraction dynamic game. The

algorithm consists of computing the equilibrium for any finite horizon and increasing the

13By implicit differentiation, X ′′j = −
αjX

′2
j +αkβ(∆j−Ψj)

1
(1+α3−jX3−j)3

1+αjXj
.
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horizon (making use of the computation for shorter horizons) until convergence is met. Un-

like the PM algorithm, the levels of investment computed under the LM algorithm at each

iteration constitute a Markov-perfect equilibrium. In our numerical analysis, we compute

the equilibrium using both algorithms, which always lead to the same converged policy func-

tions. The algorithm that computes the limit of a finite horizon game has been applied in

the context of the Ericson-Pakes framework Goettler and Gordon (2011) and in Chen et al.

(2009). A description of the LM algorithm is relegated to the Online Appendix. We note

that the PM algorithm is much faster than the LM algorithm. However, the latter allows

us to guarantee that the reaction functions cross at most once which suggests uniqueness of

equilibrium. We discuss this further in the next two sections.

We use the same parameter values as in Borkovsky et al. (2010) except for the following:

(i) the introduction of the externality κ is parametrized as fraction of the competitor’s quality

level, (ii) we use a slightly higher value for the price sensitivity λ, we use 1.2 and 1.7 instead

of 1 simply to obtain a wider range of variation in long-run outcomes over our interval for

α., equivalently we could lower the value of λ and increase the range of α.

Table 1: Parameter values

Parameter M m c ω∗ β λ αj κj
value(s) 18 5 5 12 0.925 {1.2, 1.7} [0.1, 5] [0, 1]

3.1 Long-run Distributions

Let at = [at,0, . . . , at,(M+1)2 ] be a vector of size 1× (M + 1)2 where at,s is the probability that

the industry is in state s = (ωj, ωk) at time t such that
∑

s at,s = 1.

Let P be a (M + 1)2 × (M + 1)2 transition matrix such that each element provides the

probability to transition from one industry state to another, i.e., Pr[(ω′j, ω
′
k)| (ωj, ωk)].14 We

can obtain the transient distribution at each time t by using the sequence

at = at−1P (10)

and therefore

at = a0P
t

14The Online Appendix provides a detailed derivation of the transition matrix.
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where a0 is the initial distribution over the state space. For a given set of parameters, we

obtain the converged policy functions X∗(ωj, ωk) and use them to calculate P. When this

matrix has only one left eigenvalue equal to one, the limiting distribution a∗ exists and

satisfies

a∗ = a∗P,

which guarantees that the limiting distribution is independent of the initial condition a0

and there is only one recurrent class. However, for some parameter values, we find two or

more recurrent classes by using the sequence given in (10). Therefore, all of our results are

obtained by using this sequential method starting from a uniform distribution over the state

space. We stop when a converging criterion is met, refer to this distribution as the long run

distribution a∗. We also check that we obtain the same distribution if a0 is a degenerate

distribution and we do not find large qualitative differences in our results with respect to a

uniform distribution initial condition. Only for small regions of the parameter space for α

do we find discrepancies in the number of modes of the long run distribution. It is worth

remarking that other studies of this type of models have also opted for considering the long-

run transient distributions instead of the limiting distributions (see Borkovsky et al. (2010)

Section 5.3).

Once we obtain the distribution a∗, we reshape this vector into an (M + 1) × (M + 1)

matrix ã and we count the number of modes. Each of these modes represents the maximum

probability of a specific market configuration.15 We will treat this distribution over the space

of quality combinations as the full characterization of the market structures for a given set

of parameters. It is worth discussing how this is equivalent to reporting the shapes of the

distributions for the market shares for each firm. Equation (1) guarantees that all the values

for the market shares are positive except when quality is zero. When we multiply element

by element the matrix of market shares over the (ωA, ωB) space for firm A times ã we obtain

the same number of modes as in ã except if there was a mode along the qA = 0 line. If there

was such a mode, it will appear as a mode on the element by element product of the matrix

of market shares for B and ã.

In what follows we show that ã might be unimodal (i.e., only one configuration occurs)

or bimodal (two different market configurations are possible) or tri-modal (three different

market structures can arise from the same set of parameters). Specifically, the market may

15We discard modes that have an associated probability of less than 10−3. This threshold is equivalent to
discard market structures that have an associated probability of less than 0.1% chance of occurring.
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collapse, i.e., quality is driven to zero with probability one and firms do not sell anything.

It is also possible to observe a duopoly. Finally, one firm may end up dominating, i.e., one

firm offers a good of positive quality, i.e., ωj 6= 0 whereas the other firm offers a good of

zero quality, essentially becoming insignificant, i.e., ω3−j = 0. For this case, it is possible

to observe a realization in which the lagging firm dominates the market when there are

externalities. Our main objective is to show that for a given set of parameter values, the

resulting long-run distribution may imply a non-negligible probability for different market

structures. Figure 1 shows an example in which ã has three modes.

Figure 1: Transient distributions

Notes: Transient distributions from same policy function at different time periods. Initial distribu-
tion a0 is uniform.

In the next two sections, we provide a numerical analysis of the effect of heterogeneity on

the long-run market structures. Also, to keep notation more tractable, instead of referring to

firms by j and 3− j, we will refer to them as A and B. We begin with the case of no quality

externality, i.e., κA = κB = 0 so that an improvement of quality of firm A has no effect

on consumers’ valuation for the good sold by firm B. In that case, we investigate how an

advantage in the investment technology changes the equilibrium, which, in turn, affects the

long-run market configurations. We then proceed with the case of quality externalities, i.e.,

13



κA, κB > 0. Here, we show that the presence of a quality externality may make the leading

firm to lose market dominance (vis-a-vis its competitor, the lagging firm) in order to increase

the industry market share (with respect the outside option). However, in some cases, the

presence of the quality externality (induced by a patent released on the part of the leading

firm) might also lead the lagging firm to dominate the market if the quality externality is

more favorable to the lagging firm.

4 Market Structures in the Long-run

4.1 Market Structures in the Absence of Quality Externalities

Suppose that κA = κB = 0, i.e., there is no quality externality. We concentrate on the case

where the probability of an industry-wide negative shock is δ = 0.1 which does not cover

the cases of multiplicity of equilibria discussed in Borkovsky et al. (2010). Higher values

of δ simply increase the regions of a market collapse in our graphs below. To facilitate the

discussion, we parametrize the heterogeneity in αA and αB as follows αA = µ and αB = µ−ε
where ε ∈ [0, µ] measures the heterogeneity in returns to investment between the two firms.

Firm A is the leading firm and firm B is the lagging firm.

Differences between αA and αB have an effect on the equilibrium investment policy func-

tions and the corresponding probabilities of success. Figure 2 (left panel) provides the con-

verged value and policy functions as well as the corresponding probabilities of success for

each firm for the parameter values indicated there.
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Figure 2: Value, policy, and probability of success functions
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Notes: Left panel: asymmetric R&D capabilities and no externalities. Right panel: Asymmetric
R&D capabilities with externalities κA = κB = 0.3. In both panels λ = 1.7 and δ = 0.1.

We consider two cases. When the likelihood of success of investment is the same for both

firms, the policy and value functions are identical (not shown on the graphs). However, when

this likelihood is not the same across the two firms (left panel), the lagging firm (the one

with a lower α value, firm B in the graph) invests more in some states to compensate for

this lack of likelihood of success. Because of the low probability of success of increasing its

product quality and the higher amount of money spent in the investment, firm B receives

in the long run a lower stream of cash flows and ends up having lower values for its value

function compared to firm A. This is even true when firm B sells a high quality product and

firm A is absent (A’s quality is equal to 0). The reason for this is that the depreciation effect

is strong enough to counteract the possibility of quality improvements, thus leading to low

net discounted profits.

Figure 3 provides a general overview of the long-run market configurations for different

values of αA and αB with αA = µ and αB = µ− ε: it summarizes all market configurations

for different combinations of µ and ε when the rate of depreciation is δ = 0.1. The left

panel corresponds to λ = 1.2 and the right panel to λ = 1.7. Each point (µ, ε) is associated

with one entire probability distribution in the long run such as the one depicted in the right

lower panel in Figure 1. Points on the vertical axis represent the cases where both firms

are identical (αA = αB). Any point to the right of the vertical axis represents a case of

heterogeneity in which Firm B is the laggard (ε > 0). Since below the diagonal the difference
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µ− ε is negative, none of those points are associated with any model specification and they

are left in blank. The farther to the right from the vertical axis, the higher the degree of

heterogeneity in the likelihood of success of investment. The intensity of color represents

each of the market structure types as indicated by the color bar on the right of the graphs.

Figure 3: Market structures when there are no externalities
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term A,B means that the limiting distribution for quality is bimodal, i.e., either firm may take over
as a monopoly. Finally, the letter C indicates that the market collapses. Left panel represents the
outcomes λ = 1.2 and right panel when λ = 1.7.

As investment becomes more reversible (higher depreciation rate δ) the region for duopoly

shrinks from occupying a large portion of the parameter space studied to no presence at all.16

As the price sensitivity λ increases the outside good market share expands in all cases. This

effect dominates when µ is low (below 0.6 on the right panel) and the only market structure

prevailing is both firms providing a good with quality of zero (market collapse). For values of

µ greater than a certain value (0.6 on the right panel), positive qualities are observed in the

long-run but each non-market collapse structure requires a higher value of µ to counteract

the higher price sensitivity. The advantage of the leader firm increases in this case.

Finally, we discuss how an increase in heterogeneity (an increase in ε keeping µ constant)

leads to changes in the long-run market structures. Figure 3 shows the effect of heterogeneity

when a more capable firm (i.e., ε > 0), leads the market to change from a duopoly structure

to a duopoly and monopoly of the leading firm, and to a monopoly of the leading firm only

(for µ > 1.5 on left panel and for µ > 2.4 on the right panel). The effect of heterogeneity is

16Further results on the role of δ can be made available upon request.
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even stronger when the price sensitivity is higher (right panel). Notice that if the leading firm

has a relatively low capacity of transforming investment into succesful increases in quality

(low α), then the effect of the heterogeneity is weaker and the probability of observing a

monopoly from the laggard coexisting with positive probabilities for duopoly and monopoly

from the leader firm is not negligible (µ approximately less than 1.5 on the left panel and

less than 2.4 on the right panel). We summarize this insights in the following Observation.

Observation 1: The quality ladder model with heterogeneity in the like-

lihood of success of investment and quality externalities can exhibit different

long-run distributions over market structures depending on parameter values.

Those different structures are: market collapse, market dominance by either firm,

duopoly, and combinations of these structures.

4.2 Market Structures and Quality Externalities

Having discussed the case of heterogeneity in the absence of quality externalities, we now

turn to the situation in which there is an externality. This present analysis is motivated by

the electric vehicle (EV) market. As mentioned in the introduction, this market has recently

witnessed a major change since the leading firm (Tesla Motors) has released most patents,

allowing other firms to benefit from Tesla’s own improvements in quality.

In our model, the release of the patent has two interpretations. First, consumers’ valuation

for each good depends on the quality levels of both goods. That is, in the presence of a quality

externality, consumers’ valuation for good j depends on ωj + κjω3−j where κj ≥ 0 in the

case of a positive externality. Second, the heterogeneity in the return to investment narrows

(lower ε). The right panel of Figure 2 shows the policy, value, and probability functions

in the case of externalities symmetric externalities. If we compare them against the case

of no externalities (left panel) we observe that both firms benefit as indicated by the value

function. This occurs because at several points of the state space, the probability of success

of investment has increased for both firms, particularly from zero to positive values at some

points of the (ωA, ωB)-grid.

Figure 4 shows the different combinations of market structures that arise in this model

with externalities. There, the left panel shows the results when the externalities are symmet-

ric. The presence of quality externalities shrinks the region in which firm A dominates and

makes the duopoly outcome more prevalent. This is due to the fact that the externalities are

symmetric, i.e., any firm benefits every time the other firm succeeds.
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Figure 4: Market structures when there are externalities
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Notes: Left column represents the outcomes from the symmetric externalities case (κA = 0.3 and
κB = 0.3). Right column represents outcomes when the externalities are not symmetric (κA = 0.3
and κB = 0.7). Both at λ = 1.7.

Although the presence of a market externality might be beneficial to the industry, this

trade-off can be harmful to the leader if the competitors take advantage of this positive exter-

nality (the patent release) to a point where the lagging firm ends up dominating the market.

This occurs if the benefit of the lagging firm from the leading firm’s quality improvement is

strong (i.e., κB = 0.7) whereas the benefit of the leading firm from the lagging firm’s quality

improvement is weak (i.e., κA = 0.3). This is seen in the right panel of Figure 4. It shows

that releasing a patent from a lagging firm might lead to a total loss of market share by A

as the lagging firm B takes over the market (near µ = 1 and ε < 0.1). We summarize this

insight in the following Observation.

Observation 2: Allowing for a quality externality, for instance through the

release of a patent, removes market dominance by allowing the lagging firm to

benefit from the leading firm’s investment. Depending on parameter values, this

may lead to dominance by the laggard.

The region in which the laggard ends up dominating the market in the example above

might seem too small to be of any major concern. However, the presence of the externality

also expands the region in which there is a market collapse, which defeats the purpose of a

patent release in an attempt to expand the entire industry’s market share. It is common when

working with this type of models to report the expected market shares as opposed to the entire
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distribution over quality: the element-by-element product of the matrix containing the long-

run probability distribution and the matrix of market shares from the static game, by doing

so, we mask the number of modes in the distribution by providing one single number that may

confound different configurations. Figure 5 shows the stacked market shares computed in this

manner for different levels of the externality for cases in which the two firms have the same

likelihood of success of investment. On the left panel firm A does not receive any externality

from B’s quality (κA = 0). As κB increases, B’s market share expands (white region) at the

expense of firm A’s market share. On the right panel we repeat the same exercise but at

a positive level of externality for A, κA = 0.3. Interestingly, in this case B’s market share

expands and reaches its maximum level even before the point where κB = κA. This shows

that even when masking the potential multiplicity of modes in the long-run distribution by

taking expected values of market outcomes, the dominance of the laggard can be observed.

Figure 5: Expected market shares for different levels of the externality
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Notes: Each panel shows the stacked expected market shares at each level of the externality for
firm B. αA = αB = 1.5 in both panels. κA = 0 in the first panel and κA = 0.3 in the second.
Vertical axis represents market size.

As we concluded in Section 2, the curvature of the investment reaction functions depends

on the sign of ∆j − Ψj. For all the cases analyzed here we find that the investments are

strategic substitutes.
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5 Final Remarks

This paper does not attempt to assess the multiplicity of equilibria that Borkovsky et al.

(2010) does. In that case of multiplicity, different policy functions and hence different tran-

sient distributions arise from the same parameter values (see for instance Table 7 in that

paper). We abstract from such situations by focusing on a region of the parameter space

where there has not been documented multiplicity of equilibria. We are agnostic as to whether

that phenomenon occurs in the case of externalities but our analysis of the investment reac-

tion functions suggests there is a unique equilibrium. The purpose of our work is to explore

the richness of this class of models in terms of long-run distributions. This is known in the

literature (for instance Figure 4 in Borkovsky et al. (2012)) but to the best of our knowledge

not described in the context of externalities.

As mentioned in the introduction, the estimation of the dynamic quality-ladder model is

challenging. One important application is the one in Goettler and Gordon (2011). There,

the policy experiments consist of simulating 10,000 industries under some specific counter-

factual scenario, each industry is simulated 300 time periods given the initial condition given

by the data. Then different outcomes are provided: expected profits, consumer surplus,

and investments. It is unlikely but possible that the transient distribution over the quality

space exhibits multiple modes, which would indicate the possibility of positive probability of

different market structures similar to those in our paper.

Our main application of these insights is to study the effect of a patent release that

improves the quality of the competitor’s good through a network effect. We model this

as a quality externality in the presence of asymmetric returns to investment levels. Such

externality is a function of the competitor’s product quality and affects the consumer’s utility

for the other good. We examine the long-run distributions over market structures obtained by

simulating the industry using the converged policy and value functions. We show that a single

vector of model parameters can generate probability distributions that can lead to positive

probabilities for one or more market structures. In particular, we show that it is possible for

the laggard to dominate the market, in which case the patent release from the leader should

have been avoided. In addition, the potential of multi-modal long-run distributions may have

important consequences on the type of market structures that can arise when simulating this

type of models.
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Online Appendix (not for publication)

In this appendix, we describe the Levhari-Mirman (LM) (1980) algorithm and the transition

matrix.

LM Algorithm

Value Function, Finite Programs. For j = 1, 2, consider firm j’s maximization problem

for a horizon of τ periods, τ = 0, 1, .... For j = 1, 2, given x3−j ≥ 0, firm j’s value function

for a τ -period horizon is

vτj (ωj, ω3−j) = max
xj≥0

{
Πj (ωj, ω3−j)− xj + βjE[vτ−1

j (ω′j, ω
′
3−j)|ωj, ω3−j, xj, x3−j]

}
(11)

where E[·] is the expectation operator with respect to {ω′j, ω′3−j} according to the transition

probabilities. The value function for the static game (i.e., when τ = 0) is

v0
j (ωj, ω3−j) = max

xj≥0
{Πj (ωj, ω3−j)− xj} . (12)

Consistent with (11), firm j’s value function for the infinite-period horizon is thus

v∞j (ωj, ω3−j) = max
xj≥0

{
Πj (ωj, ω3−j)− xj + βjE[v∞j (ω′j, ω

′
3−j)|ωj, ω3−j, xj, x3−j]

}
. (13)

Equilibrium. Next, we define the Markov-perfect equilibrium for a game lasting T + 1

periods, i.e., a horizon of T periods, T = 0, 1, ...,∞. The equilibrium consists of the strategies

of the two firms for every horizon from the first period (when there are T periods left) to the

last period (when there is no horizon).

Definition The tuple {Xτ
1(ω1, ω2), Xτ

2(ω2, ω1)}Tτ=0 is a Markov-perfect Nash equilibrium for

a game of T -period horizons if, for all {ω1, ω2},

1. For τ = 0, for j = 1, 2, given X0
3−j(ω3−j, ωj),

X0
j (ω3−j, ωj) = arg max

xj≥0
{Πj (ωj, ω3−j)− xj} . (14)
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2. For τ = 1, 2, . . . , T , for j = 1, 2, given Xτ
3−j(ω3−j, ωj) and {X t

1(ω1, ω2), X t
2(ω2, ω1)}τ−1

t=0 ,

Xτ
j (ω3−j, ωj)

= arg max
xj≥0
{Πj (ωj, ω3−j)− xj

+ βjφj(xj)φ3−j(X
τ
3−j(ω3−j, ωj)) ·

(
δV τ−1

j (ωj, ω3−j) + (1− δ)V τ−1
j (ωj + 1, ω3−j + 1)

)
+ βjφj (xj) (1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj, ω3−j − 1) + (1− δ)V τ−1
j (ωj + 1, ω3−j)

)
+ βj(1− φj (xj))φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
·
(
δV τ−1

j (ωj − 1, ω3−j) + (1− δ)V τ−1
j (ωj, ω3−j + 1)

)
+βj(1− φj (xj))(1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj − 1, ω3−j − 1) + (1− δ)V τ−1
j (ωj, ω3−j)

)}
(15)

where, for any y, z ∈ {1, 2, ...,M},

V τ ′−1
j (y, z) =

{
Πj (y, z)−X0

j (y, z) τ ′ = 1

Πj (y, z)−Xτ ′−1
j (y, z) + βj · Γτ

′−2
j (Xτ ′−1

j (y, z), Xτ ′−1
3−j (z, y)) τ ′ = 2, 3, ..., T

(16)

is the value function for a τ ′ − 1 period horizon for any state vector (y, z) with

Γτ
′−2
j (Xτ ′−1

j (y, z), Xτ ′−1
3−j (z, y))

= φj(X
τ ′−1
j (y, z))φ3−j(X

τ ′−1
3−j (z, y) ·

(
δV τ ′−2

j (y, z) + (1− δ)V τ ′−2
j (y + 1, z + 1)

)
+ φj(X

τ ′−1
j (y, z))(1− φ3−j(X

τ ′−1
3−j (z, y))) ·

(
δV τ ′−2

j (y, z − 1) + (1− δ)V τ ′−2
j (y + 1, z)

)
+ (1− φj(Xτ ′−1

j (y, z)))φ3−j(X
τ ′−1
3−j (z, y)) ·

(
δV τ ′−2

j (y − 1, z) + (1− δ)V τ ′−2
j (y, z + 1)

)
+ (1− φj(Xτ ′−1

j (y, z)))(1− φ3−j(X
τ ′−1
3−j (z, y)) ·

(
δV τ ′−2

j (y − 1, z − 1) + (1− δ)V τ ′−2
j (y, z)

)
(17)

is the expected continuation value function corresponding to the equilibrium for a

horizon of τ ′ − 2 periods.

Condition 1 defines the Nash equilibrium in the static game. Note that in fact, there is no

externality since X0
3−j(ω3−j, ωj) has no effect on the zero-period-horizon objective function

for firm j. Condition 2 states the equilibrium for every higher horizon of the game. For

τ = 1, 2, 3, ..., T , expressions (16) and (17) reflect the recursive nature of the equilibrium in

which the equilibrium continuation value function for a (τ − 1)-period horizon depends on

the equilibrium strategies for τ ′-period horizons, (τ − 1) > τ ′ ≥ 0.

Proposition states the Markov-perfect Nash equilibrium for each horizon of the game.
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Proposition 5.1. Consider a game of T -period horizons.

1. For τ = 0, {
X0

1 (ω1, ω2) , X0
2 (ω2, ω1)

}
= {0, 0} , (18)

with the corresponding value function is

V 0
j (ωj, ω3−j) = Πj (ωj, ω3−j) . (19)

2. For τ ≥ 1, given {V τ−1
1 (ω1, ω2) , V τ−1

2 (ω2, ω1), {Xτ
1 (ω1, ω2) , Xτ

2 (ω1, ω2)} is defined by

Xτ
1 (ω1, ω2) = max

− 1

α1

+

√
β1

α1

√
α2Xτ

2 (ω2, ω1) ∆τ−1
1 + Ψτ−1

1

1 + α2Xτ
2 (ω2, ω1)

, 0

 , (20)

Xτ
2 (ω2, ω1) = max

− 1

α2

+

√
β2

α2

√
α1Xτ

1 (ω1, ω2) ∆τ−1
2 + Ψτ−1

2

1 + α1Xτ
1 (ω1, ω2)

, 0

 , (21)

where for j = 1, 2,

∆τ−1
j ≡ δ

[
V τ−1
j (ωj, ω3−j)− V τ−1

j (ωj − 1, ω3−j)
]

+ (1− δ)
[
V τ−1
j (ωj + 1, ω3−j + 1)− V τ−1

j (ωj, ω3−j + 1)
]
,

Ψτ−1
j ≡ δ

[
V τ−1
j (ωj, ω3−j − 1)− V τ−1

j (ωj − 1, ω3−j − 1)
]

+ (1− δ)
[
V τ−1
j (ωj + 1, ω3−j)− V τ−1

j (ωj, ω3−j)
]
.

Proof The first-order condition corresponding to (15) is

− dj + βj
αj

(1 + αjxj)
2φ3−j(X

τ
3−j(ω3−j, ωj)) ·

(
δV τ−1

j (ωj, ω3−j) + (1− δ)V τ−1
j (ωj + 1, ω3−j + 1)

)
+ βj

αj

(1 + αjxj)
2 (1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj, ω3−j − 1) + (1− δ)V τ−1
j (ωj + 1, ω3−j)

)
− βj

αj

(1 + αjxj)
2φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
·
(
δV τ−1

j (ωj − 1, ω3−j) + (1− δ)V τ−1
j (ωj, ω3−j + 1)

)
−βj

αj

(1 + αjxj)
2 (1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj − 1, ω3−j − 1) + (1− δ)V τ−1
j (ωj, ω3−j)

)
= 0

which yields (9) and thus (21), as long as the second-order condition is satisfied, i.e., for
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j, 3− j = 1, 2, j 6= 3− j,

− βj
2α2

j

(1 + αjxj)
3

α3−jx3−j

1 + α3−jx3−j
·
(
δV τ−1

j (ωj, ω3−j) + (1− δ)V τ−1
j (ωj + 1, ω3−j + 1)

)
− βj

2α2
j

(1 + αjxj)
3

1

1 + α3−jx3−j
·
(
δV τ−1

j (ωj, ω3−j − 1) + (1− δ)V τ−1
j (ωj + 1, ω3−j)

)
+ βj

2α2
j

(1 + αjxj)
3

α3−jx3−j

1 + α3−jx3−j
·
(
δV τ−1

j (ωj − 1, ω3−j) + (1− δ)V τ−1
j (ωj, ω3−j + 1)

)
+βj

2α2
j

(1 + αjxj)
3

1

1 + α3−jx3−j
·
(
δV τ−1

j (ωj − 1, ω3−j − 1) + (1− δ)V τ−1
j (ωj, ω3−j)

)
< 0

Algorithm. Having described the model and defined the equilibrium. We now proceed

with the characterization of the MPE. Here, we solve the equilibrium recursively as in Levhari

and Mirman (1980). Consider first the static game of investment, i.e., τ = 0. Then, there

is no externality, and no firm has an incentive to invest, i.e., the Markov-perfect equilibrium

for a game of 0-periods horizon is simply{
X1

1 (ω1, ω2) , X1
2 (ω1, ω2)

}
= {0, 0} ,

with the corresponding value function

V 0
j (ωj, ω3−j) = Πj (ωj, ω3−j) .

Hence, there is a unique equilibrium for the no-horizon game in which the firms do not invest

and the value function is equal to the profit function corresponding to the Bertrand game.

Consistent with the solution of the equilibrium, we characterize the equilibrium for each

horizon. Each iteration is an horizon with the caveat that at each iteration, the solution

to the reaction function is a Markov-perfect Nash equilibrium (and not an approximation).

Hence, wherever we stop, we have an equilibrium. The question remains whether we converge

to the stationary Markov-perfect Nash equilibrium (in infinite horizons).

1. For τ = 0, {
X0

1 (ω1, ω2) , X0
2 (ω2, ω1)

}
= {0, 0} ,

with the corresponding value function is

V 0
j (ωj, ω3−j) = Πj (ωj, ω3−j) .

2. For τ ≥ 1, given {V τ−1
1 (ω1, ω2) , V τ−1

2 (ω2, ω1)}, firm j’s reaction functions are given by

(21) and the solution to this system of equations is the equilibrium at this iteration.
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Transition Probability Matrix

Using the converged policy functions, for j = 1, 2,

ω′j|ωj = min{max{ωj + τj + η, 1},M}

where τj ∈ {1, 0} such that Pr[τj = 1] = φj (ω1, ω2) =
αjXj(ωj ,ω3−j)

1+αjXj(ωj ,ω3−j)
and η ∈ {−1, 0} such

that Pr[η = −1] = δ.

We want to calculate all transition probabilities such as Pr[(ω′1, ω
′
2) | (ω1, ω2)]. We consider

each case separately.

1. Suppose that (ω1, ω2) is such that ω1, ω2 /∈ {0,M}. Given (ω1, ω2), there are (M + 1)2

conditional probabilities to calculate. All of them are zero except

Pr[(ω1, ω2) | (ω1, ω2)] = δφ1 (ω1, ω2)φ2 (ω2, ω1)

+ (1− δ) (1− φ1(ω1, ω2)) (1− φ2(ω2, ω1)) ,

Pr[(ω1 + 1, ω2) | (ω1, ω2)] = (1− δ)φ1 (ω1, ω2) (1− φ2(ω2, ω1)) ,

Pr[(ω1 − 1, ω2) | (ω1, ω2)] = δ (1− φ1(ω1, ω2))φ2 (ω2, ω1) ,

Pr[(ω1, ω2 − 1) | (ω1, ω2)] = δφ1 (ω1, ω2) (1− φ2(ω2, ω1)) ,

Pr[(ω1 − 1, ω2 − 1) | (ω1, ω2)] = δ (1− φ1(ω1, ω2)) (1− φ2(ω2, ω1)) ,

Pr[(ω1, ω2 + 1) | (ω1, ω2)] = (1− δ) (1− φ1(ω1, ω2))φ2 (ω2, ω1) ,

Pr[(ω1 + 1, ω2 + 1) | (ω1, ω2)] = (1− δ)φ1(ω1, ω2)φ2 (ω2, ω1) .

2. Suppose that (ω1, ω2) = (0, 0). Given (ω1, ω2), there are (M + 1)2 conditional proba-

bilities to calculate. All of them are zero except

Pr[(0, 0) |(0, 0)] = 1− (1− δ) (φ1(0, 0) + φ2(0, 0)− φ1(0, 0)φ2(0, 0)) ,

Pr[(1, 0) |(0, 0)] = (1− δ)φ1(0, 0) (1− φ2(0, 0)) ,

Pr[(0, 1) |(0, 0)] = (1− δ) (1− φ1(0, 0))φ2(0, 0),

Pr[(1, 1) |(0, 0)] = (1− δ)φ1(0, 0)φ2(0, 0).

3. Suppose that (ω1, ω2) = (M,M). Given (ω1, ω2), there are (M + 1)2 conditional prob-
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abilities to calculate. All of them are zero except

Pr[(M,M) | (M,M)] = 1− δ(1− φ1 (M,M)φ2 (M,M)),

Pr[(M − 1,M) | (M,M)] = δ (1− φ1 (M,M))φ2 (M,M) ,

Pr[(M,M − 1) | (M,M)] = δφ1 (M,M) (1− φ2 (M,M)) ,

Pr[(M − 1,M − 1) | (M,M)] = δ (1− φ1 (M,M)) (1− φ2 (M,M)) .

4. Suppose that (ω1, ω2) = (0,M). Given (ω1, ω2), there are (M + 1)2 conditional proba-

bilities to calculate. All of them are zero except

Pr[(0,M) | (0,M)] = 1− (1− δ)φ1 (0,M)− δ (1− φ2 (0,M)) ,

Pr[(1,M) | (0,M)] = (1− δ)φ1 (0,M) ,

Pr[(0,M − 1) | (0,M)] = δ (1− φ2 (0,M)) .

5. Suppose that (ω1, ω2) = (M, 0) . Given (ω1, ω2), there are (M + 1)2 conditional proba-

bilities to calculate. All of them are zero except

Pr[(M, 0) | (M, 0)] = 1− (1− δ)φ2 (0,M)− δ (1− φ1 (M, 0)) ,

Pr[(M, 1) | (M, 0)] = (1− δ)φ2 (0,M) ,

Pr[(M − 1, 0) | (M, 0)] = δ (1− φ1 (M, 0)) .

6. Suppose that (ω1, ω2) is such that ω1 = 0 and ω2 /∈ {0,M}. Given (ω1, ω2), there are

(M + 1)2 conditional probabilities to calculate. All of them are zero except

Pr[(0, ω2) | (0, ω2)] = δφ2 (ω2, 0)

+ (1− δ) (1− φ1 (0, ω2)) (1− φ2 (ω2, 0)) ,

Pr[(1, ω2) | (0, ω2)] = (1− δ)φ1 (0, ω2) (1− φ2 (ω2, 0)) ,

Pr[(0, ω2 − 1) | (0, ω2)] = δ (1− φ2 (ω2, 0)) ,

Pr[(0, ω2 + 1) | (0, ω2)] = (1− δ) (1− φ1 (0, ω2))φ2 (ω2, 0) ,

Pr[(1, ω2 + 1) | (0, ω2)] = (1− δ)φ1 (0, ω2)φ2 (ω2, 0) .

7. Suppose that (ω1, ω2) is such that ω1 /∈ {0,M} and ω2 = 0. Given (ω1, ω2), there are
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(M + 1)2 conditional probabilities to calculate. All of them are zero except

Pr[(ω1, 0) | (ω1, 0)] = δφ1 (ω1, 0)

+ (1− δ) (1− φ2 (0, ω1)) (1− φ1 (ω1, 0)) ,

Pr[(ω1, 1) | (ω1, 0)] = (1− δ)φ2 (0, ω1) (1− φ1 (ω1, 0)) ,

Pr[(ω1 − 1, 0) | (ω1, 0)] = δ (1− φ1 (ω1, 0)) ,

Pr[(ω1 + 1, 0) | (ω1, 0)] = (1− δ) (1− φ2 (0, ω1))φ1 (ω1, 0) ,

Pr[(ω1 + 1, 1) | (ω1, 0)] = (1− δ)φ2 (0, ω1)φ1 (ω1, 0) .

8. Suppose that (ω1, ω2) is such that ω1 = M and ω2 /∈ {0,M}. Given (ω1, ω2), there are

(M + 1)2 conditional probabilities to calculate. All of them are zero except

Pr[(M,ω2) | (M,ω2)] = δφ1 (M,ω2)φ2 (ω2,M)

+ (1− δ)(1− φ2 (ω2,M))

Pr[(M − 1, ω2) | (M,ω2)] = δ (1− φ1 (M,ω2))φ2 (ω2,M)

Pr[(M,ω2 − 1) | (M,ω2)] = δφ1 (M,ω2) (1− φ2 (ω2,M))

Pr[(M − 1, ω2 − 1) | (M,ω2)] = δ (1− φ1 (M,ω2)) (1− φ2 (ω2,M))

Pr[(M,ω2 + 1) | (M,ω2)] = (1− δ)φ2 (ω2,M)

9. Suppose that (ω1, ω2) is such that ω1 /∈ {0,M} and ω2 = M . Given (ω1, ω2), there are

(M + 1)2 conditional probabilities to calculate. All of them are zero except

Pr[(M,ω1) | (ω1,M)] = δφ2 (M,ω1)φ1 (ω1,M)

+ (1− δ)(1− φ1 (ω1,M))

Pr[(ω1,M − 1) | (ω1,M)] = δ (1− φ2 (M,ω1))φ1 (ω1,M)

Pr[(ω1 − 1,M) | (ω1,M)] = δφ2 (M,ω1) (1− φ1 (ω1,M))

Pr[(ω1 − 1,M − 1) | (ω1,M)] = δ (1− φ2 (M,ω1)) (1− φ1 (ω1,M))

Pr[(ω1 + 1,M) | (ω1,M)] = (1− δ)φ1 (ω1,M) .
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