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Résumé/abstract

This paper introduces a new tail risk measure based on the risk-neutral excess expected shortfall of a
cross-section of stock returns. We propose a novel way to risk neutralize the returns without relying on
option price information. Empirically, we illustrate our methodology by estimating a tail risk measure
over a long historical period based on a set of size and book-to-market portfolios. We find that a risk
premium is associated with long-short strategies with portfolio sorts based on tail risk sensitivities of
individual securities. Our tail risk index also provides meaningful information about future market
returns and aggregate macroeconomic conditions. Results are robust to the cross-sectional information
selected to compute the tail risk measure.
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1 Introduction

Following the 2007-2009 financial crisis, financial researchers as well as regulators
devoted a lot of attention to the measure and analysis of tail risk and systemic risk and
to the economic consequences of such risks. An important objective of this research
agenda is to develop measures that are able to capture a common risk to many assets
or institutions as opposed to individual risk measures such as VaR for one particular
portfolio or firm. While systemic risk focuses on the financial institutions, tail risk looks
more generally at the risk provoked by catastrophic events or disasters and affects all
firms. It could be measured with the time series of one firm or one portfolio but rare
occurrences of disasters makes this estimation at best very imprecise. Therefore, the
most recent approach to measuring tail risk has been to exploit the richness of the cross
section of returns. By proposing a power law model for the left tail of asset returns, Kelly
and Jiang (2014) obtain a new measure of time-varying tail risk that captures common
fluctuations in tail risk among individual stocks. Allen et al. (2012) measure systemic
risk through the 1% VaR of several tail distributions of the cross section of returns of
financial firms. The main additional advantage of these measures is the availability of
long historical data for equity returns at the daily frequency. Both studies use the fact
that tail risk plays an important role in explaining risk premia of equities and contains
valuable information for predicting future economic conditions. One shortcoming is that
this measure of tail risk is extracted directly from raw returns without risk neutralization,
that is an adjustment of statistical returns for changes in risk aversion or time preferences
or other changes in economic valuations.

Other measures of tail risk have sought for additional information by using prices in
options markets. Ait-Sahalia and Lo (1998) and Ait-Sahalia and Lo (2000) introduced
an option-based methodology to recover the risk neutral densities for the S&P 500 index.
In these papers, the authors stress that risk neutral information coming from option
prices provides an additional, economically relevant, source of information to estimate
tail risk, in their case value-at-risk. Recently, Bollerslev and Todorov (2011) proposed
a model-free index of investors’ fear adopting a database of intraday prices of futures
and the cross section of S&P 500 options. They show that tail risk premia account for a
large fraction of expected equity and variance risk premia as measured by the S&P 500

aggregate portfolio. In a complementary work, Bollerslev et al. (2015) provide empirical



evidence that the jump risk component of the variance risk premium is a strong predictor
of future market returns. Still relying on S&P 500 index options, based on its empirical
distribution, Bali et al. (2011) propose risk neutral and objective measures of riskiness,
and show that they are good predictors of future market returns. Siriwardane (2013)
proposes another interesting method to estimate the risk of extreme events. He extracts
daily measures of market-wide disaster risk from a cross-section of equity option portfolios
(in particular from puts) using a large number of firms, and show that these measures are
useful to predict business cycle variables and to construct profitable portfolios sorted by
disaster risk. A major limitation of these studies is the short time span for the availability
of option and high-frequency data, in the order of 20 years, especially when the focus is
on rare events. Moreover several markets around the world do not have well-established
and liquid option markets.

We propose an approach based on a cross-section of portfolio returns, together with
a risk neutralization. Our aim is to develop a simple measure based on easily available
data with a long history and applicable to a vast set of asset markets. This disqualifies
option prices used in the previously cited studies. However we want to reinterpret the
insight provided in Ait-Sahalia and Lo (2000) by eliciting state-price densities with a
nonparametric methodology developed in Almeida and Garcia (2016). Based on a family
of discrepancy functions, they derive nonparametric stochastic discount factor (SDF)
bounds that naturally generalize variance (Hansen and Jagannathan (1991)), entropy
(Backus et al. (2014)), and higher-moment (Snow (1991)) bounds. Implicit in these
derivations is the computation of the SDF itself that provides the risk neutralization.
Therefore our new tail risk measure is based on the risk neutral expected shortfall of a
set of portfolio returns. Our aggregate tail risk measure will simply be the average of the
individual portfolio expected shortfalls.

To assess the empirical relevance of our tail risk measure, we first look at how well
it matches the main extreme market events and the business cycle during a long sample
period (July 1926 to April 2014). It captures most events, is more volatile around these
events, and appears as strongly counter-cyclical. We also verify that it correlates well
with other measures of tail risk based on high-frequency and option-implied data as well
as macroeconomic variables. Since our measure is based on risk-neutralized returns, it is

essential to compare it with a measure using both returns and option data. We replicate



the methodology used in Ait-Sahalia and Lo (1998, 2000) and Ait-Sahalia and Lo (2000)
for the period January 1996-April 2014 and estimate their tail-risk measure. The time
series from our own tail risk measure based only on the cross-section of returns follows
closely their tail-risk measure time series. These basic properties are therefore reassuring
in qualifying our measure as risk-neutral tail risk.

The second empirical test is to establish the existence and measure the magnitude
of a tail risk premium in equity returns. Our main hypothesis, as in Kelly and Jiang
(2014), is that investors marginal utility is increasing in tail risk. Therefore, we explore
long-short portfolios based on tail risk hedging capacity exposures and show that, even
after controlling for several benchmark factors, this strategy provides a sizable negative
and statistically significant alpha for both one-month and one-year horizons. The results
are also very similar to the option-based methodology of Ait-Sahalia and Lo (1998) and
Ait-Sahalia and Lo (2000) on the shorter sample.

Next, we provide evidence that our tail risk measure anticipates stock market move-
ments for intermediate horizons, even after controlling for several known predicting vari-
ables. Our measure has also some predictive power for economic conditions. We use the
predictive regressions framework of Allen et al. (2012) with forecasting horizons varying
from one to twelve months. Our proposed tail risk measure reasonably anticipate fu-
ture declines of the main macroeconomic condition indexes. To establish the “channels”
through which tail risk affects the real economy we also consider Bloom (2009) vector
auto-regressive framework. We show that short-term impulse responses to shocks in tail
risk are associated with lower levels of employment and industrial production.

In a robustness section, we show how the risk premia and predictive properties vary
with the proposed measure when we change such parameters as the number and nature
of portfolios used to compute the excess expected shortfall, the window length and the
VaR threshold as well as the discrepancy parameter that controls the risk neutralization.
Overall our conclusion is that the results are robust in general and most notably when we
use different portfolios such as industry portfolios or financial and real sector portfolios.

Brownlees and Engle (2015) also adopted a shortfall measure to assess systemic risk
but proposed a market-based measure of conditional capital shortfall for individual fi-
nancial firms (exposed to capital regulation). We differ by considering a risk-neutral

measure for a larger cross section of returns. Of course, our measure could be special-



ized to financial firms to consider systemic risk and not simply tail risk. Our paper is
also intimately related to Adrian and Brunnermeier (2014) by its use of cross-sectional
information. However, they also consider a systemic risk measure that captures financial
industry co-movements or financial contagion. In our methodology, interconnectedness
of assets returns comes from the risk-neutral probability that gives more weight to states
of nature where assets in the chosen panel have lower returns. Finally, this paper also
expands the analysis performed by Bali et al. (2009) in several dimensions. First, while
their risk measures are based on objective probabilities, our tail risk exploits the impor-
tant information in terms of downside risk embedded in risk neutral probabilities. Also,
while Bali et al. (2009) focus mainly on portfolio formation according to downside risk
exposures, our paper puts more emphasis on analyzing the macroeconomic implications
of tail risk and the channels through which it affects the real economy.

The rest of the paper is organized as follows. Section 2 describes how we construct
a risk-neutralized shortfall measure of tail risk based on a panel of asset returns and
explains how it differs from other available tail risk measures. We compute a long time
series of such tail risk based on a set of size and book-to-market portfolios. Section
3 starts by analyzing the correlation of our tail risk measure with the main existing
tail and systemic risk measures and market index returns. We analyze in detail the
relationship of the proposed measure with its option counterpart using Ait-Sahalia and
Lo (2000) methodology and with the Kelly and Jiang (2014) measure. In section 4, we
study empirically the predictive properties of our tail risk measure for market returns
and macroeconomic activity indicators. Section 5 analyzes the robustness of our tail risk
measure in various dimensions. Section 6 concludes with a summary and some potential

extensions.

2 A Nonparametric Tail Risk Measure

2.1 Building a Risk-Neutral Excess Expected Shortfall Measure

Historical Value-at-Risk (VaR) was considered for a long time as a good tool for
managing the risk of a portfolio. However, given the relative scarcity of extreme events
in historical samples, several authors proposed to build measures based on risk-neutral

probabilities assigned to historical observations. These were generally computed from



option prices on the underlying (generally the market) as in Ait-Sahalia and Lo (2000)
and several other papers!. These probabilities incorporate economic conditions and the
risk attitude of investors and are therefore more reliable than historical probabilities.
However, since prices for liquid options are not readily available for many assets and
countries, a cross-sectional approach based on returns has been suggested to compute
risk associated with tails?.

For both theoretical and empirical reasons we choose to base our measure on excess ex-
pected shortfall instead of value-at-risk® A main advantage of using threshold exceedances
comes from the information it contains about the whole tail of the distribution instead
of just a point-wise percentile as VaR.

For a particular asset 7, we define the excess expected shortfall as follows:

TR, = E°®[(R;; — VaRa(R;;))|(Rir < VaRy(Ri,))] (1)

where t is the time period for which we are calculating the tail risk, 7 denotes the possible
states of nature, « is the VaR threshold and Q(R) indicates the risk neutral density. Our
aggregate market tail risk measure will be based on the average of the expected shortfall
TR;; of several portfolios ¢. Note that in this design we model Q as a function of the
observable returns. Throughout the paper we calculate tail risk at a monthly frequency.
Thus, as it will become clearer further on, the states of nature (7) will be captured
by a number of past daily returns. By keeping this number relatively small our risk
measure will react more quickly to changes in market conditions given that recent cross-
sectional values of asset returns will be used to estimate the risk-neutral density. This is
in contrast with usual Value-at-Risk measures based on statistical historical properties

of asset returns?.

1See in particular Ait-Sahalia and Lo (1998), Breeden and Litzenberger (1978), Bates (1991), Ru-
binstein (1994), Longstaff (1995).

2The most recent literature includes Kelly and Jiang (2014), Allen et al. (2012), and Adrian and
Brunnermeier (2014) to cite a few.

3Basak and Shapiro (2001) provide an equilibrium analysis that puts forward various counter-intuitive
implications of VaR risk management and show that expected shortfall avoids them. In addition, expected
shortfall is a coherent measure of risk (see Artzner et al. (1999)).

4For an interesting exception, see Paul Glasserman (2015) for a data-driven selection of historical
stress test scenarios that are both extreme and plausible based on empirical likelihood estimators.



2.2 A Non-Parametric Risk-Neutral Density

To circumvent the problems related to the availability of options prices, we propose to
calculate the RND via nonparametric methods. To that end, Hansen and Jagannathan
(1991) seminal paper proposes to minimize a quadratic loss function to estimate a stochas-
tic discount factor that prices exactly a set of basis assets. This insightful approach has
been used extensively to assess the adequacy of financial models with a mean-variance
SDF frontier. Almeida and Garcia (2016) have generalized their methodology to fron-
tiers that involve all moments of the return distributions and use them to gauge models
involving tail events such as disaster and disappointment aversion models. Given a series
of assets returns, in an incomplete market where there are more states of nature than
assets, they find a family of SDFs that minimize convex functions defined in the space
of admissible and strictly positive SDFs. These convex functions measure the distance
between an admissible SDF and the constant SDF of a risk-neutral economy. Assum-
ing a constant short-term rate and homogenous physical probabilities, just as in a VaR
historical simulation, we are able to obtain a direct correspondence between SDFs and
RNDs.

Given that RND are the building blocks of our tail risk procedure we succinctly expose
the methodology adopted and its implications. Let (£2, F, P) be a probability space, and
R denote a K-dimensional random vector on this space representing the returns of K
primitive basis assets. In this static setting, an admissible SDF is a random variable m

for which E(mR) is finite and satisfies the Euler equation:

E(mR) = 1k, (2)

where 1 represents a K-dimensional vector of ones.

As in Hansen and Jagannathan (1991), Almeida and Garcia (2016) are interested in
the implications of Equation (2) for the set of existing SDFs. For a sequence of (my, R;)
that satisfy Equation (2) for all ¢, and observing a time series {R; };—1, 1 of basis assets
returns, we assume that the composite process (my, R;) is sufficiently regular such that

5

a time series version of the law of large numbers applies®. Therefore, sample moments

°For instance, stationarity and ergodicity of the process (m, R;) are sufficient (see Hansen and
Richards, 1987). In addition, we further assume that all moments of returns R are finite in order to deal
with general entropic measures of distance between pairs of stochastic discount factors.



formed by finite records of measurable functions of data R; will converge to population
counterparts as the sample size T' becomes large.

Given a sample of basis assets returns, the set of admissible SDF's will depend on the
market structure. The usual case is to have an incomplete market, i.e., the number of
states of nature (7) larger than the number of basis assets K. In such case, an infinity
of admissible SDFs will exist, and if there is no in-sample arbitrage on the basis assets
payoff space (see Gospodinov et al. (2016)), there will exist at least one strictly positive
SDF (see Duffie, 2001). For each strictly positive SDF there will be a corresponding risk
neutral density.

Given a convex discrepancy (penalty) function ¢ the generalized, in sample, minimum

discrepancy problem proposed by Almeida and Garcia (2016) can be stated as:

T

1

Mmyp = arg min -~ — E o(m;)
{m1,...mr} T i=1

T

1 1
subject to  — m;(R; — —1k)] = Ok
r ; a (3)

1 T
T;mi—a

m; > 0(or m; > 0) Vi

In this optimization problem, restrictions to the space of admissible SDFs come di-
rectly from the general discrepancy function ¢. The conditions E(m (R — 11x)) = Ok
and F(m) = a must be obeyed by any admissible SDF m with mean a. In addition,
whenever there is a strictly positive solution the implied minimum discrepancy SDF is
compatible with absence of arbitrages in an extended economy that considers derivatives
over the underlying basis assets®. The choice to impose a non-negativity or strict posi-
tivity constraint in the optimization problem is dictated by the choice of the discrepancy
function ¢(.) (see Almeida and Garcia (2016) for a detailed analysis).

Despite the straightforward interpretation of the problem in (3), its solution is not
easy given that the number of unknowns is as large as the size of the sample. Therefore,

Almeida and Garcia (2016) show that one can solve an analogous simpler dual problem:

6Tt is important to note that the homogeneous probability assumption will not affect the key insights
we derive from this methodology and, if desired, one could also consider a kernel density to model the
physical probabilities without additional complications

7
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(or strictly positive) real line.

PmT = sup 2w — ¢(w) (5)
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In this dual problem A\ can be interpreted as a vector of K Lagrange multipliers

that comes from the Euler equations for the primitive basis assets in (3). Almeida and
mTl — g7t

(v +1)
v € R. This family captures as particular cases minimizations of variance (Hansen

Garcia (2016) specialize the ¢ function to the Cressie Read family, ¢7(m) = ,
and Jagannathan, 1991), higher moments (Snow, 1991), and different kinds of entropy
(Stutzer, 1996) estimators. With this family, closed-form formulas are obtained for A and
m MD-

i) if v >0,
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Q 1 [ o

1 1 T
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a

and 0 otherwise, and:
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The implied SDF depends directly on the parameter . Different choices of ~ will

weight differently higher-order moments of returns (see Almeida and Garcia (2016)).
The choice of v and the robustness of results with respect to its value are therefore
important elements of our empirical strategy. We discuss these aspects in Sections 2.4
and 5 respectively.

To obtain the risk neutral probabilities associated with each observation interpreted
as a state of nature, we distort the usual 1/7" measure by the computed SDF in (9)

adjusted by the interest rate:

m;(1+r

N = mill ¥r) = ) (10)
We illustrate the distortions in Figure 1 for a five-asset economy that we will make
explicit in the next section. On the horizontal axis, we plot the returns on the optimal
portfolio resulting from the optimization in (8), while the risk neutral probabilities are
featured on the vertical axis for various values of the parameter . The different lines
illustrate clearly the fact that for more negative values of v the implied risk neutral
probabilities give more weight to low returns or “bad” states of nature from an investor

perspective. From the linear outcome generated by the unit value (Hansen and Jagan-

nathan (1991)), the convexity increases as 7 becomes more negative.

2.3 Choosing the basis assets and the estimation window

As mentioned earlier in this section our risk neutral density estimation methodology
assumes an incomplete market framework. Empirically this translates into an upper
bound in the number of cross sectional assets for a given number of states of nature
T. More precisely, for a given number of days (states of nature) 7" we must consider a
number of assets K such that K < T'. Most papers (Kelly and Jiang (2014) in particular)

compute a tail risk measure at a monthly frequency. To make our measure conditional



on recent information, we therefore limit our sample to the former 30 days preceding the
last day of each month”. Otherwise we would be using old information to predict current
and future stock market and economic conditions. Therefore we cannot adopt a strategy
similar to Kelly and Jiang (2014) who include all securities available in the CRSP data
base at the end of each month and pool all their returns in the former 30 days to compute
their tail risk measure based on the Hill estimator®.

Given an upper bound of 30 days, we need to base our measure on portfolios. But
we can ask ourselves whether we should limit ourselves to the market portfolio or ex-
ploit the cross-sectional information in say the usual twenty-five size and book-to-market
portfolios . Bali et al. (2014) argue that previous studies have shown that investors
usually hold portfolios composed by some market proxy (e.g. stock funds) and individual
stocks. In this environment individual stocks play a crucial role on the total portfolio
tail risk. Empirically, they find evidence that market tail risk is not capable of provid-
ing useful information for return prediction whereas individual assets tail risk measures
(idiosyncratic tail risk) is quite successful in predicting market returns. Expanding on
this, Kelly and Jiang (2014) also argues that the whole cross-section of stocks contains
valuable information regarding the tail behavior of the returns. Therefore it seems that
we should rely on as much cross-sectional information as possible.

However, using the whole set of twenty-five portfolios as basis assets in our procedure
might produce risk-neutral probabilities that result in sizable pricing errors on those
basis assets!’. Recently Kozak et al. (2015) show that a stochastic discount factor based
on the first few principal components of asset returns explains many anomalies. Their
argument rests on the fact that since asset returns have substantial commonality, absence
of near-arbitrage opportunities implies that the SDF depends only on a few sources of
return variation. Therefore, instead of considering the whole cross-section of the 25 size

and book-to-market portfolios we extract the first five principal components from the 30-

day panel*!. To make our measure conditional, we compute the principal components for

"In the robustness section of the paper (section 5 we report the sensitivity of our empirical results
to the panel length.
8In Almeida et al. (2016) we compute a tail risk risk measure using a similar methodology with
individual assets in a high-frequency environment.
9For more details about these portfolios, see http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /index.html.
10We also computed our tail risk measure for the whole set of 25 Fama-French portfolios. While the
pricing errors where higher, the overall empirical findings were preserved.
1Tn our thorough comparison with the Kelly-Jiang measure in section 3.3, we also compute our
measure with principal components computed from the whole cross-section of returns.

10



every end-of-month in the sample. Thus, for each t, we are not using future information in
the tail risk calculation. Table 1 reveals that these principal components are responsible
for much of the portfolio variations. With five principal components, close to 90% of the

variation is explained for the full sample.

2.4 The choice of v

To understand the effect of v on our tail risk measure, we derive a Taylor expansion of

mYt+l_g7+1
(v(v+1))

F(m) =, ' (m) =m0, " (m) = (7= 1)m1=2, ¢"(m) = (v~ 1) (y ~2)m ... Taylor
2

the expected value of ¢p(m) = around the SDF mean a. Noting that ¢(a) = 0,

expanding ¢ and taking expectations on both sides we obtain:!

a’t (y — 1)a72

B(g(m)) = "5~ Blm —a)* + U (v~ 1)(y — 2ar

4!

E(m—a)®+ E(m—a)*+...

(11)
Two important effects appear regarding the weights attributed to skewness and kurtosis
in this expansion. First, for values of v close to one, both skewness and kurtosis have
small weights when compared to the variance that has a weight equal to one half in the
expansion. This implies that discrepancies with values of v close to one do not capture
much of the higher moment activity of pricing kernels. Once we move to more negative
values of v both skewness and kurtosis receive considerable weights in the expansion.
The second important aspect refers to the relative weights that are given to skewness
and kurtosis by different Cressie Read functions. For —2 < v < 1 note that the absolute
weight given to kurtosis is smaller than the corresponding weight given to skewness.
However, for values of v < —2, kurtosis receives more weight than skewness. In fact all
even higher-moments receive more absolute weight than their corresponding odd higher-
moments in this region of ~.

In Almeida and Garcia (2016), we derive bounds for the disaster model in Backus

et al. (2014). In this model the logarithm of consumption growth is given by:

Gi41 = N1 + Jig1 (12)

12Note that all functions in the Cressie Read family are analytic, that is, their derivative of any order
exists. For this reason, the only condition that is needed for the Taylor expansion to be valid is the
existence of the first four moments of the MD SDF.

11



where 7,41 is the normal component R(u,0?) and J;,; is a Poisson mixture of normals.

—TT

The number-of-jumps variable j takes integer values with probabilities e ji, where 7 is

the jump intensity. Conditionally on the number of jumps, J; is normal:
Jelj ~ R(ja, jA?). (13)
In this model, the logarithm of the stochastic discount factor with power utility is:

logmyy1 =log B — (g (14)

where ( is the coefficient of relative risk aversion. Therefore, the mean of the SDF is:

a = exp {10gﬁ —(p+ %(CU)Q + (e Sat0BEN? 1)} (15)

The discrepancy bound for the Cressie-Read family is the expectation of ¢7(m). It
can easily be obtained by taking the expectation of exp (v + 1) logm, that is:

d = exp (7 + Dlog(B) — Cu(y + 1) + 0.5 % (Co(y + 1))* + m(exp —C (v + Dabd + 0.5(¢(y + 1)A)* — 1)
(16)
These bounds have a direct link with the measure of entropy used in Backus et al.
(2014). When v = —1 our discrepancy function is log(a) — E(log(m)), which corresponds
precisely to the entropy of the pricing kernel reported in their Equation (13).
For these bounds we are computing the Cressie-Read bounds with the returns on
the S&P 500 index and equity options strategies on this index. We use four options
portfolios that consist of highly liquid at-the-money (ATM) and out-of-the-money (OTM)
European call and put options on the S&P 500 composite index trading on the Chicago

Mercantile Exchange 3.

We want to illustrate here how the frontiers and the disaster
model discrepancy vary with the values of 7. For the disaster model we use the parameter
values reported in Table IT of Backus et al. (2014), except for the risk aversion parameter
that we set at 8 to match a slightly higher equity premium. For the values of v, we chose

three values that will illustrate the relation between the bounds and the model. In Figure

3 we plot the three frontiers corresponding to the three values of v 0, -0.5 and -1. We

13These have been constructed by Agarwal and Naik (2004) to study performance of hedge funds
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also plot in the corresponding colors the points corresponding to the discrepancy of the
model at the mean SDF value 0.9946. For v = 0 the model passes quite easily because
the weights put on higher moments for building the frontier are relatively small. On the
contrary, for v = —1 the restrictions in the bound are more stringent and the model is
far below the frontier. For the intermediate value of v = —0.5, the model point is above
the frontier but still closer than for the two other values'. Given this illustrative exercise
we will choose v = —0.5 as our base case.

There are also some statistical arguments for choosing this class of loss functions
Kitamura et al. (2013) showed that, under some technical assumptions, the Hellinger
(v = —0.5) is the more robust one based on an asymptotic perturbation criterion®s.

Expanding on this argument, in the internet appendix we present a rich discussion on
the importance of the non linearities in the RND and its effects on tail risk. Briefly, if
we want a tail risk measure that incorporates higher-order moments information we must
compute a SDF (and therefore a RND) that also considers this information, in contrast to
the Hansen and Jagannathan one. For instance, Schneider and Trojani (2015) argue that
investors’ “fear” is an aversion to downside risk, exactly what we aim at capturing with
our methodology. Furthermore, they link the concept of “fear” with investor prudence!,
which is intimately related to negative skewness aversion. Therefore, a complete and
informative risk measure should be able to reflect the informational content on higher-
order moments.

Therefore for the majority of the empirical section we adopt the Hellinger Tail Risk

as the main benchmark,but we will still present robustness tests with different values of

v in section 5.

14We can use values close to -0.5 where the model point is event closer to the bound but one has to
be careful because important discontinuities may suddenly occur and the frontier may get closer to the
bound for v = —1.

15In a recent paper, exploring the non-linearity implied by the Hellinger estimator, Schneider and
Trojani (2015) introduce a class of trading strategies that might be used to trade higher moments of
the returns. In the internet appendix we also explore the higher moments information contained in the
estimated risk neutral density and its implications to tail risk.

16(Almeida and Garcia, 2012) and (Almeida and Garcia, 2016) demonstrated that the methodology
we consider to estimate the SDF is compatible with this concept.
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2.5 A first look at the tail risk measure over time

Figure 2 plots the evolution of our tail risk measure, in blue, and a Hoddrick-Prescott
filtered version, in red, from July 1926 to April 2014. Our measure is very volatile and
features various peeks often coincident with extreme or significant financial, economic or
political events. These events have affected negatively equity returns in important ways.
Our tail risk measure captures most of these huge market drops in U.S. history and also
appears to be more volatile in the periods before and after some of them. Of course two
economic and financial crisis periods figure prominently, the Wall Street Crash of 1929
followed by the Great Depression of 1929-1939 on the left, the beginning of our sample,
and the recent financial crisis of 2008-2010 on the right of the graph. In between these
two major crises, the filtered series shows that the overall level of the tail risk remained
below these extremes, except for occasional spikes that are triggered by some specific
events. For these sporadic events the mean reversion is much stronger, as in the dot-com
bubble of the early 2000s or the recent European debt crisis starting at the end of 2009.

Other tail risk measures have also captured these types of events but since many of
them rely on option prices their span is much narrower, their sample starting at the

beginning of the 1990s.

3 A comparison with other tail risk measures: cor-
relations and risk premia

Since many tail risk or downside risk measures have been proposed in the last five
years, we start by computing simple correlations with several of them over different
sample periods, some based on equity returns starting in the 60s, others using options
computed from the beginning of the 90s. We also consider correlations with market
indexes and macroeconomic indicators. We investigate in more depth the relationship of
our measure with two prominent tail risk measures, one based on option prices using the
methodology of Ait-Sahalia and Lo (2000) and one recently proposed by Kelly and Jiang
(2014) that uses the information in the whole panel of individual stock returns. In this
section we will conduct the comparison in terms of risk premia associated with portfolios

sorted according to the hedging capacity of individual securities against tail risk. We
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will extend the comparison in section 4 with the predictive properties of the measures for

market returns and macroeconomic activity indicators.

3.1 Correlations with other indexes

In Table 2 we report the correlation coefficients between our tail risk measure and
other tail risk measures as well as financial and macroeconomic indexes: the tail risk
measure of Bollerslev et al. (2015) based on option prices, the Kelly and Jiang (2014) tail
risk measure, the VIX, two stock market indexes, the S&P 500 and the CRSP portfolio,
the systemic risk measure of Allen et al. (2012), and the macroeconomic conditions index
of Bali et al. (2014).

The first interesting result is that our tail risk measure has a noticeable correlation
(0.43) with Bollerslev et al. (2015) tail risk measure despite the fact that we do not include
any option returns in the computation of our measure. Another important measure
based on option prices is the VIX. Its correlation with our tail risk measure is 0.56.
This measure is often interpreted as a good indicator for investors’ crash fears. More
generally, since option prices reflect investors’ risk attitudes and economic conditions,
it seems that our risk neutralization goes some distance in capturing this important
information for extreme risk. In section 3.2, we will conduct a thorough comparison
between a nonparametric measure incorporating option prices and our measure based
only on risk-neutralized cross-sectional portfolio returns.

Another tail risk measure has been proposed recently by Kelly and Jiang (2014),
thereafter KJ tail risk measure. Surprisingly, it is not at all correlated with our tail
risk measure. From a time series point of view our measure is volatile and has little
persistence, while the KJ measure is highly persistent. The nature of these measures
is therefore very different. The source of this difference may be due to the amount of
information used in constructing the two measures (the whole cross-section of returns for
KJ, principal components of the 25 size and book-to-market portfolios in our measure),
the fact that KJ is based on raw returns while ours is computed with risk-neutralized
returns, or other differences regarding the VaR threshold and the estimating window.
We will explore all aspects in a thorough comparison in section 3.3. It should be noted
that the KJ measure has a negative correlation of -0.38 with the VIX and a small and

positive correlation of 0.23 with the Bollerslev et al. (2015) measure of tail risk.
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As it should be expected, our measure is counter-cyclical, with negative correlations
of -0.32 and -0.24 with the S&P 500 and CRSP returns respectively. In 4.1, we will look
more closely at the relation between tail risk and the future aggregate returns. Another
important benchmark is the measure of systemic risk (CATFIN) based on the financial
sector by Allen et al. (2012). The computation of CATFIN is related to our measure since
it is estimated using both value-at-risk (VaR) and expected shortfall (ES) methodologies,
with nonparametric and parametric specifications. The correlation with our tail risk
measure is 0.45, which is reassuring since returns in the financial sector capture financial
crisis risk which underlies a good portion of the movements in a more general tail risk
measure based on all equity returns. Allen et al. (2012) show that high levels of systemic
risk in the banking sector impact macroeconomic conditions. Similarly our tail risk
measure is correlated with macroeconomic indicators of Bloom (2009) and Bali et al.
(2014) (0.46 and 0.47 respectively). In section 4.2 we study in detail its relationship with
the real economy through the uncertainty channel. The KJ measure of tail risk exhibits
no counter-cyclical behavior nor does it relate to the macroeconomic indicators of Bloom
(2009) and Bali et al. (2014).

These correlations suggest a common component between our tail risk measure based
on the cross-section of risk-adjusted returns and option-based measures of tails risk mea-
sures. They also point out the distinctive behavior of the KJ tail risk measure despite
the use of the cross-section of returns. We will probe further the relation between these

two sets of measures in the next two sections.

3.2 A detailed comparison with an option-based tail risk mea-

sure

We have seen that our tail risk measure is reasonably well correlated with several tail
risk and systemic risk measures. Among them, we want to probe further the relation
with option-based measures. Since we claim that our procedure produces a risk-neutral
measure of tail risk even though we are using only equity returns, it would be reassuring
to show that the extracted measure has much in common with a measure incorporating
option prices. Our empirical strategy consists in applying the methodology in Ait-Sahalia
and Lo (2000) to estimate the excess expected shortfall in (1) using the S&P 500 index

options and returns. Ait-Sahalia and Lo (2000) propose a nonparametric VaR measure
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that incorporates economic valuation through the state-price density associated with the
underlying price processes. Ait-Sahalia and Lo (1998) propose to estimate an option-
pricing formula H(.) which has the structure of the Black-Scholes formula but where the
volatility is estimated nonparametrically, that is Hgg(F;,, X, 7,7 .;0(X/F;,, 7)), where
F, ; is the forward price of the asset (S&P 500 index) at time ¢ for time-to-maturity 7,
X is the exercise price, r denotes the interest rate, and o(.) is the volatility function.
The estimated option-price function can be differentiated twice with respect to the strike
price X to obtain 92H (.)/0X?, and then the state-price density by multiplying this
second derivative by exp (r¢,7). Ait-Sahalia and Lo (2000) used this estimated state-
price density to compute an economic VaR but we can of course use it to compute the
excess expected shortfall.

The main point of Ait-Sahalia and Lo (2000) was to arrive at a VaR value that is
adjusted for risk and time preferences and for changes in economic conditions. We have
the same objective but we differ from their work in one important aspect. We estimate the
risk-neutral density from a panel of equity returns and distort the objective probabilities
through a minimum-discrepancy procedure. We apply the two methodologies for the
period January 1996 to April 2014. Figure 4 features both tail risk measures. Despite
several methodological and empirical differences between the two measures, Figure 4
reveals that both time series tend to move together with many coincident peaks and
troughs.

To analyze more precisely the similarities between the two measures we conduct an
analysis of implied market premium. We first measure the hedging capacity (or insurance
value) of all individual stocks with code 10-11 in CRSP over the period (i.e. their con-
temporaneous betas with respect to the tail risk measure, r;; = o; + ﬁiTRiyt”) and then
sort these betas into ten portfolios for the lowest hedging portfolio to the highest one.
We then compute the post-formation returns associated with these portfolios over the
next month. The results are reported in Table 3. There are two panels. The upper panel
reports the option-implied tail risk while the lower one features our tail risk measure with
the Hellinger discrepancy. For each panel, we report several measures of returns. In the
first line we present the raw average returns for the ten portfolios and for the difference

between the highest hedging and the lowest hedging portfolios (last column High-Low).

1"This is to be distinguished from the predictive betas computed in Kelly and Jiang (2014), r; ;11 =
a; + BiTR; ¢+, which measure exposure to tail risk.
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For the other lines we report the returns after controlling for other factors, namely the
three Fama-French factors, to which we add momentum, liquidity and volatility one by
one.

First, looking at the first line which reports the raw average returns, it is remarkable to
see that the magnitudes of the High-Low column are very similar and share the same signs
and statistical significance. The difference is -3.73 for the option-based measure while it
is -3.06 for the Hellinger measure. This suggests that the crash perceptions embedded in
the option prices are stronger than in our nonparametric distortion. After controlling for
the other factors, all the signs remain negative except when we add volatility. In terms
of statistical significance the option-implied high minus low returns are estimated more
precisely than the nonparametric measure, which makes sense since we do not incorporate
market prices of options.

There is evidently some short-run correlation between volatility and tail risk. One
can think of an equilibrium explanation in a consumption-based asset pricing model as
in Farago and Tedongap (2015). They propose an intertemporal equilibrium asset pric-
ing model featuring disappointment aversion and changing macroeconomic uncertainty
(consumption volatility) where besides the market return and market volatility, three
disappointment-related factors are also priced: a disappointment factor, a market down-
side factor, and a volatility downside factor. The last factor represents changes in market
volatility in disappointing states and calls for a particular premium. Our linear analysis
cannot disentangle these downside effects, hence the correlation between the volatility
factor and the tail risk factor.

We believe that these results show that our nonparametric tail risk measure goes a
long way in capturing the risk adjustment ingrained in option prices. Therefore it can
supplement the option-based tail risk measures for markets where liquid option markets
are not present and for periods where these derivative securities did not exist but where
tail risk was prominent, such as the Great Depression of 1929-1939. Since our measure
is based on a panel of equity returns we need to understand its relation with the Kelly

and Jiang (2014) tail risk measure, especially since they appear to be uncorrelated.
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3.3 A detailed comparison with the Kelly and Jiang (2014) tail

risk measure

Figure 5 plots the tail risk measure based on our expected excess shortfall methodology
together with the Kelly and Jiang (2014) measure. The two series are quite distinct and
seem to relate negatively when big shocks hit the market. Kelly and Jiang (2014) assume

that the lower tail of any asset return ¢ behaves according to the following law:

—ai/¢
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Uy
with r < w; < 0. The authors estimate the time-varying tail exponent by the Hill

estimator:
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where Ry, is the kth daily return that falls below an extreme value threshold u; during
month ¢, and K; is the total number of such exceedences in the cross-section within
month ¢. They find that the tail exponent is highly persistent and features a high degree
of commonality across firms.

While the KJ estimator is based on an assumption about the statistical behavior of the
tail of the cross-section distribution of returns, our estimator relies on a risk adjustment
that distorts the returns of the chosen basis assets according to a set of Euler conditions.
This adds a lot of variability to our tail risk estimator.

Although our tail risk factor and the Kelly and Jiang (2014) tail risk measure are
computed from a cross-section of equity returns they differ in several aspects. An im-
portant difference relates to the information used by each method. Each month, Kelly
and Jiang (2014) compute their tail risk measure based on the whole set of individual
raw returns below a threshold of 5% in the elapsed month. To set ideas if we have 5,000
individual securities, the procedure uses 5% of 100,000 observations (5,000 x 20days),
that is 5,000 observations. Our measure starts from a set of 25 portfolios sorted by size
and book-to-market value, collects their returns over the last 30 days (a month and a
half) and then extracts five principal components of these 25 series of 30 days, leaving us
with five series of 30 observations. We then compute our excess expected shortfall with

the risk-adjusted returns at a level of 10% for each principal component and take the
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average of the five shortfall measures. Therefore there is a fundamental difference since
the Kelly and Jiang (2014) method extracts a common component among the say 5,000
tail observations while our procedure selects extreme observations after a double reduc-
tion in information by first looking at portfolios and then taking principal components of
these portfolios. Is this contraction of information the main reason for the fundamental
difference between the two measures of tail risk?

To answer this question we start by running our procedure with all individual secu-
rities. We compute the five principal components out of the whole universe of available
stocks every month for a window of 30 days. The robustness of the procedure is evaluated
as in section 3.2 with the returns of 10 portfolios sorted according to the tail risk hedging
capacity and the resulting high minus low returns. To benchmark the results obtained
with all securities, we first compute the portfolio returns over the 1926-2014 period with
our original data set based on the 25 size and book-to-market portfolios. In Table 4,
we report in the last column the high minus low returns earned post-formation for a
one-month holding period (Panel A) and for a one-year holding period (Panel B). For the
short-period returns, all differences are negative, of similar magnitude across the various
controls for additional factors and statistically significant except for the last line where
we add a volatility factor. The results are similar for the yearly returns but the difference
is now positive and insignificant when we add the volatility factor. Table 5 contains the
results of the same analysis when the five principal components are computed from the
whole universe of equities available in CRSP. Results for both short and long holding pe-
riods are very similar. Moreover we have conducted the same analysis directly on the 25
size and book-to-market portfolios instead of their five principal components and results
were also very similar. Therefore we can conclude confidently that our methodology is
robust to the amount of cross-sectional information used to build the tail risk measure.

Another source of divergence could be due to our risk-neutralization. As a final
exercise using this methodology, we define a standardized tail risk measure based on the
average of the excess expected shortfall in equation (1) for the raw returns of the five
principal components, a so-called objective counterpart to our risk-neutral measure. We
proceed similarly to sort the cross-section of returns in ten portfolios according to their
standardized tail risk hedging sensitivity and compute the post-formation returns of the

portfolios as before. Table 6 presents the results with this alternative objective tail risk
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measure. We note that both in terms of magnitude and statistical significance results
are very different from our reported figures in Table 4, providing some evidence of the
important contribution of the risk-neutralization procedure.

We conclude this section by some interesting observations about the Kelly and Jiang
(2014) tail risk measure. If we express the law of tail returns in terms of gross returns
instead of net returns, that is 1 + Ry, 1 + 7 and 1 + u, then the Hill estimator will be

approximately, for small daily returns:

Ky
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Based on this new Hill estimator, we compute the tail risk equivalent KJ series with
the whole cross-section at any point in time. We plot in Figure 6 this series together
with our Hellinger measure of tail risk based on the 5 principal components of the whole
cross-section of returns. Despite the different methodologies and the risk-neutralization
the two series behave much more similarly than before. Averaging the difference of the
logarithms of the returns or the difference of the returns makes a huge difference on
the property of the tail risk series. Of course this new Hill estimator is closer to our
excess expected shortfall measure, the main difference being the fact that our measure is
based on risk-adjusted returns of more aggregated information. The graphs suggest that
these two elements, risk neutralization and aggregation of information, are important for
the magnitude of the fluctuations in both series, sometimes enhancing them sometimes

dampening them. There is not a clear consistent pattern over time.

4 Predictive Properties of Tail Risk

Predictability of market returns or other financial and macroeconomic variables is
another way to assess the usefulness of our tail risk measure. A key recent paper by Welch
and Goyal (2008) studies comprehensively the predictive power of variables that have been
suggested by the academic literature to be good predictors of the equity premium. Their
conclusions are rather negative both in-sample and out-of-sample. They find that models
have a poor and unstable predictive performance. Therefore, we want to submit our
measure to the same type of analysis and determine whether it adds to the main predictors

established in the literature. We explore in turn market returns, macroeconomic responses
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to tail risk shocks, and finally how tail risk anticipates business cycle fluctuations.

4.1 Stock Markets Returns

We provide two sets of predictive regressions. First, in Table 7, we consider simple
regressions where we control for market returns (12 lags): Tittrk] = O+ BT Ry 411 g+ Uy,
where TR refers to the tail risk measure. Our goal is to compare the predictive power of
our measure relative to the other proposed tail risk measures. This has two advantages.
It is a test with respect to the direct competition but it is also a robustness test with
respect to sub-samples of the long sample 1926-2014 since the various tail risk measures
are available over different periods. We choose the CRSP value-weighted market returns
index as our target'®. Overall, we note that the estimated regression coefficients are
positive, meaning that increases in current tail risk are associated with future higher
market returns. Also, for most of the samples over which we perform the regressions the
estimated coefficients are statistically significant for an interval of two to six months. The
most robust performance comes from the long horizons starting in the 1960s. This is not
the case of the other tail risk measures. The CATFIN index does not show any forecasting
power while the Bloom volatility index is forecasting at a very short horizon of one or
two months. The VIX has some predictive ability in the medium-term, while the Kelly-
Jiang tail risk measure starts showing some predictive power after six months. The best
predictor appears to be the BTX measure from Bollerslev et al. (2015). From the third
month on, we see a statistically significant relation between future CRSP returns and
the option-based tail risk measure. We also observe a growing pattern in the coefficients.
This is also apparent in our Hellinger tail risk measure, which could be due to the period
starting in 1996, because this pattern is also present for the regressions with the VIX and
not for the other horizons.

We continue our predictive exercise in Table 8, by adding many of the predictive
candidates used in Welch and Goyal (2008) to the previous regression with our Hellinger
tail risk measure and lagged returns for the long sample (1962-2012), that is 7444 =
a+ BT R, + 1y + GWy + u. In Panel A, of the seven predictors considered (Book-to-
Market, Dividend Payout, Earnings Price Ratio, Dividend Price Ratio, Dividend Yield,
Stock Variance, Default Yield Spread), only the dividend price ratio and the dividend

18Since results with the S&P500 were very similar, we omitted for space considerations.
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yield appear to be significantly related to future stock market returns for all horizons,
as it has been often established. However it does take away the predictive power of tail
risk for the three- to eight-month horizons. The results for the default yield spread are
particularly interesting. It shows some significant predictive ability for the six- to twelve-
month horizons, but it takes away the predictive significant relation between tail risk and
future market returns. This reinforces the interpretation of our measure as tail risk since
the default spread ought to widen in periods when tail risk is prevalent. It is therefore
hard to capture each effect independently.

In Panel B of Table 8, we consider another set of seven predictors used in Welch and
Goyal (2008): Default Return Spread, Inflation, Long Term Yield, Long Term Rate of
Returns, Term Spread, Treasury Bill Rate and Net Equity Expansion. Only the long-
term rate of bond returns shows a strong and statistically significant predictive power,
but tails risk remains as a significant predictor three-to-six months ahead.

Overall, we can conclude that tail risk has a significant predictive power in the short

run even after controlling for the main predictors of future stock market returns.

4.2 FEconomic Predictability

We now explore the relationship of our tail risk measure with the real economy. Re-
cently, in the aftermath of the great recession, several papers put forward facts and
patterns about economic uncertainty, its fluctuations during business cycles, and its em-
pirical relation with micro and macro growth dispersion measures. While measures of
volatility may capture uncertainty, it is often the case that big negative shocks play an
important role in increasing economic uncertainty. This asymmetry occurs because good
news seem to build up more gradually over a period of time. Therefore tail risk measures
may help in measuring better the effects of economic uncertainty on macroeconomic vari-
ables such as output growth and employment. Both Bloom (2009) and Bali et al. (2014)
propose measures of macroeconomic uncertainty based on volatility of macroeconomic
variables. We have seen that our measure of tail risk has a correlation close to 0.5 with
these two uncertainty indicators. We have also characterized the jumps in tail risk in

Figure 2 and they often correspond to jumps in uncertainty identified by Bloom (2009).

9Bloom (2009) identifies 17 uncertainty dates defined as events associated with stock market volatility
in excess of 1.65 standard deviations above its trend.
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In what follows we will follow the vector auto-regressive impulse response function ap-
proach of Bloom (2009) to distinguish between the effects of volatility and tail risk on

macroeconomic aggregate variables.

4.2.1 Impulse Response Functions to Tail Risk Shocks

To assess whether uncertainty shocks influenced firm-level decisions, Bloom (2009)
considered several variables in his VAR approach: stock market returns, volatility(either
market variance or an indicator capturing the biggest volatility events), the Federal Fund
rate, wages, inflation, hours, employment and production in manufacturing, in this order.
A main conclusion was that a rise in economic uncertainty reduces industrial production
and employment in the short run. We argue that some of the uncertainty effect captured
by Bloom’s study might actually be coming from tail risk, in the same line as Kelly and
Jiang (2014)?°. The main theoretical insight behind our argument comes from a firm’s
perspective on investment decisions in the presence of uncertainty. If firms look at their
investment choices as real options, an increase in uncertainty may defer her decision to
invest, to produce or to hire. Therefore a rise in volatility or tail risk may affect aggregate
production or employment as well as investment?!.

Therefore, we expand Bloom (2009)’s vector auto-regressive approach by adding our
measure of tail risk to the set of variables considered??. In terms of order we include it just
after volatility. In Figure 7, we plot the impulse response functions on both employment
and industrial production to a one standard deviation shock in the monthly estimated
tail risk measure?3. The gray area represents the 95% confidence interval for the response
function while the solid line represents the response itself. In Figure 8, we plot the same
response functions for a one standard deviation shock to volatility measured by stock
market variance?*. For the shocks to tail risk, the effect is less abrupt but it seems to

be followed by a more positive recovery compared to a volatility shock where after 10

20These authors use the tail risk measure that we described earlier applied to the manufacturing firms
in the sample. It is therefore a very specific measure that we want to compare to our general-purpose
measure based on principal components. It is also instructive to see how our measure performs given
the two very different properties of the two measures as illustrated in section 3.3.

21Kellogg (2014) and Jurado et al. (2015) explore in more depth this particular channel.

22To be precise, market returns measured by S&P 500 returns lagged, wages, hours, industrial pro-
duction and employment are in logs, inflation is measured as the difference in log CPI. The variables are
in the order indicated in the previous paragraph.

23The only difference between our approach and Bloom’s one is that we perform the impulse response
analysis with a additional tail risk factor.

24Bloom (2009) uses realized variance before the availability of VXO and VXO afterwards.
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months the strong negative shock has been absorbed without any ensuing significant
positive effect. Although the evidence is not strong, it seems that a tail risk shock has
a recovery period after the initial negative shock. In Figures 9 and 10, we plot the
same respective impulse response functions but this time with Bloom (2009) indicator
of big volatility events. Although the shapes of the reaction functions are similar, the
confidence intervals are now more telling about the effects of shocks to volatility and tail
risk. The responses to tail risk are of greater magnitude, distinctively negative in the
short run up to 10-15 months, and then becoming significantly positive at an horizon
of 30-35 months. For shocks to the volatility indicator, small initial negative effects die
after 5 months and never pick up significantly afterwards for employment. However, for
industrial production, after a small contraction in the first three months, there is a small
rebound at an horizon of 10-15 months. These results tend to show that it is difficult to
disentangle uncertainty created by big events from the the uncertainty associated with

more volatile environments.

4.2.2 Business Cycles

Bloom (2009) states that almost every macroeconomic indicator of uncertainty ap-
pears to be countercyclical. In Figure 2 we plot our tail risk, in blue, and highlight with
shades of grey the NBER recession periods. To give a better idea of the relation between
tail risk and recessions we also plot in red the same tail risk measure after passing the
series through a Hodrick-Prescott filter to isolate the cyclical component. This makes
clear that usually tail risk is higher whenever the economy is in a recession. Therefore, a
natural question to ask is whether our measure of tail risk has some predictive power over
economic downturns. Our approach is comparable to Allen et al. (2012) who consider
measures of systemic risk for the financial sector as predictors for economic downturns.
While they focus their argument on the special intermediation role of the financial indus-
try, our measure is economy-wide since it is based on portfolios of all firms making up
the stock market. Therefore in the same logic evoked in the previous section our tail risk
should anticipate movements in the real activity or business cycle indicators.

We collect a large set of macroeconomic indicators and assess their predictability by
our tail risk index at monthly horizons between one and twelve months. Overall, we have

eight indices that are available for different samples: 1) ADS, the Aruoba, Diebold and

25



Scotti macroeconomic activity indicator (02/1960 - 04/2014); 2) KCFED, the Kansas City
FED macroeconomic indicator index (01/1990 - 04/2014); the NBER recession indicator
(a recession period dummy, 07/1926 - 04/2014); CFNAI, the Chicago FED National
Activity Index (02/1967 - 04/2014); the financial and macroeconomic indexes of Jurando,
Ludvigson and Ng (2015)(07/1960 - 04/2014), the St. Louis FED Financial Stress Index
(01/1994 - 04/2014), and EPU, the Economic Policy Uncertainty Index of Backer, Bloom
and Davis (2015) (01/1985 - 04/2014). We run the following regression:

11
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k=0

where I stands for the activity index we consider and ¢ indexes the forecasting horizon
(¢ =1,...,12). Note that since the NBER recession indicator is a binary variable we
estimate a Probit model. Regression results are reported in Table 9. We observe that
for all indicators except the KCFED there is a significant predictability at short horizons
up to 3 to 4 months ahead. For the NBER and the financial uncertainty indicator the
predictive power is strong and extends to all horizons up to twelve months ahead. The
signs are of course negative to capture the negative effect of current tail risk increases on
future activity, except of course for NBER recessions and EPU which are downturn and
uncertainty measures respectively.

To conclude this section we discuss the inter-temporal relationship between our tail
risk measure and four other tail risk measures over different time periods?’, namely the
Bali et al. (2014) macroeconomic uncertainty index (01/1994 - 12/2013), the BTX tail
risk index (01/19963 - 08/2013) in Bollerslev et al. (2015), the Kelly and Jiang (2014)
tail risk measure (01/1963 - 12/2010), and finally the Allen et al. (2012) systemic risk
measure (01/1973 - 12/2012) called CATFIN. We use the same prediction regression
framework as in equation (20). In Table 10, it can be seen that we predict well the Macro
and KJ indicators at all horizons. For the BTX index, the predictability is limited to the
very short horizons, while for CATFIN we see some predictability in the first six months.
We also note that the relationship with Bollerslev et al. (2015) is almost monotonically
decreasing, but that it is the contrary for the Kelly and Jiang (2014) measure. This is

consistent with the fact that the KJ tail risk is a slow moving, very persistent measure.

25These time periods are determined by the currently available series on the web sites of the re-
searchers.
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On the contrary, the BTX measure of Bollerslev et al. (2015), like ours, is very volatile

and quickly mean reverts.

5 Robustness

To build our measure of tail risk, we have made several choices regarding the parameter
of the Cressie-Read discrepancy family (v = —0.5, so-called Hellinger discrepancy), the
number of principal components of the 25 size and book-to-market portfolios, the number
of days over which the excess expected shortfall is computed (30 days), and the threshold
of the shortfall set at 10%. Therefore, we will first verify whether our results are sensitive
to these choices. Second, we argued that there were good reasons for choosing an expected
shortfall measure over a VaR measure. However, other papers have built tail or downside
risk VaR-based measures and shown that they were superior to other risk measures (see
in particular Bali et al. (2009)). We will then reproduce our results for VaR measures
and compare them to our original results with expected shortfall. Finally, our benchmark
measure has been obtained from a set of 5 principal components of the 25 size and book-
to-market portfolios. We already checked that the sorting portfolio results survived when
we extracted the principal components from the whole cross-section of individual stocks.
Another important question concerns the choice of portfolios. Will the measure keep
similar properties when constructed from industry portfolios, or from the financial sector
only, for example? This will be our third line of investigation for measuring the robustness

of our methodology for measuring tail risk.

5.1 Robustness to the parameters of the measure

In Table 11, we report the returns of the Long-Short portfolios associated with dif-
ferent discrepancy parameters (first four columns). We can see that the patterns and
magnitudes of returns are very similar to the benchmark results. The statistical signifi-
cance of the last set of control variables, which includes volatility, disappears for 3 out of
4. The discrepancy closest to ours in the negatives, v = —1, provides therefore the most
similar results. Adding principal components (10 instead of 5) does not improve results,
nor increasing nor reducing the number of days over which we compute the expected

shortfall. Again, we seem to lose precision in estimating the risk premiums, especially
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after controlling for volatility. Finally, setting the threshold at 5% instead of 10% does
not have much of an effect. We have also computed the sensitivity of our prediction
results to these different values of the parameters.

For both market returns prediction and macroeconomic indicators forecast we arrived
at very similar results for all configurations and all variables. We can then confidently
conclude that the results are very robust to the parameters used to construct our tail
risk measure. One could add that they are too robust in the sense that the risk neutral-
ization could be done indifferently with any gamma value. In this regard it is important
to emphasize that our performance criterion is a simple average where the timing of
the prediction is not taken into account. If we consider that errors are more costly in
bad times, then more important differences will appear between the various discrepancy

gamma parameters. Risk neutralization will matter more.

5.2 Measuring Tail Risk from Industry and Sector Portfolios

We chose to build our benchmark tail risk measure on the first five principal com-
ponents of 25 size and book-to-market portfolios. In this section we want to illustrate
that our results in terms of risk premia and predictability are not changed significantly
if we take other reference portfolios. We have seen in section 3.3 that risk premia on the
high-minus-low portfolios were similar when the five principal components were computed
from the whole set of securities available in the cross-section. Here we choose three sets
of portfolios: a set of 10 industry portfolios, an aggregate portfolio of the financial sector,
and an aggregate portfolio of the real sector. Results are reported in Table 12. Apart from
the sorting portfolios columns where alphas are reported for the high-minus-low portfolio
we also feature market returns predictions, in a long sample (similar to Kelly and Jiang
(2014), starting in the 60s) and a short one (as in Bollerslev et al. (2015), starting in the
90s). For the long sample we also show market prediction results controlling for dividend
yield and stock variance as predictors.

In the first panel featuring 10 industry portfolios, risk premiums are remarkably sim-
ilar in terms of magnitudes and statistical significance to our benchmark estimates in
Table 4. Note that the sign of the one-year holding period when controlling for all factors
including volatility is now negative, although not significant. For the prediction of mar-

ket returns, the statistical significance patterns are very similar, where the short-term
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prevails, but the regression coefficients are lower in general.

In the financial sector panel, risk premia are generally higher in absolute value, espe-
cially for the long holding period, but the statistical siagnificance remains quite compa-
rable. The predictive power of market returns disappears in the short sample (after the
90s) which may be explained by the turmoil in financial markets during this period. We
also lose some significance and impact when controlling for stock variance. This is to be
expected since tail risk measured from financial returns is harder to disentangle from the
high stock variance episodes. This interpretation is supported by the evidence in the last
panel when we consider tail risk measured from the real sector alone.

The risk premia are again very close to the benchmark values in Table 4 with a slightly
higher level of precision in the estimates. The predictive power is also estimated with
much more precision, especially when controlling for other predictors.

We did not include results on economic predictability because they were very similar
to the benchmark results with the size and book-to-market portfolios.

We can conclude that the risk-neutralized excess expected shortfall is a very robust
measure of tail risk once we aggregate the individual stock returns into portfolios irrespec-
tive of the nature of the portfolios. Risk premia are of the same magnitude and estimated
roughly with the same degree of precision. The financial sector tail risk measure tends

to accentuate the premia but the pattern remains the same.

5.3 Measuring Tail Risk from Risk-Neutral Value-at-Risk

We have argued that expected shortfall should be preferred to value-at-risk on theo-
retical grounds, but some researchers have produced some empirical results that support
the opposite. Therefore we construct a tail risk measure based on the risk-neutral VaR
that we used in computing our excess expected shortfall for the base case with the 5
principal components of the 25 size and book-to-market portfolios. We report some se-
lected representative results in Table 13. Let us start with our benchmark risk premium
measure for the high minus low portfolio in the last columns of the table. We can see
right away that the only significant figures are the averages when we do not control for
other factors. Although the signs are preserved compared to our base-case results in
Table 4 when we control for other factors, the magnitudes are different and the statistical

significance is either marginal or disappears.

29



The other columns illustrate also the poor performance of the risk-neutral VaR tail
risk. Market returns are not predicted well, neither in a long sample nor in a short one.
No coefficient is nearly significant. The same is true for the prediction of the Kelly and
Jiang (2014) tail risk or the option-based Bollerslev et al. (2015) measure. These series
were predicted very well by the Hellinger excess expected shortfall measure, especially
the Kelly Jiang measure. This lack of predictive power extends to all series, except
the macroeconomic uncertainty index and the NBER indicator of recessions. Finally,
impulse response functions for employment and industrial production (not reported for

space considerations) are essentially zero.

6 Conclusion

We propose a new measure of tail risk based on the risk-neutralized returns of a
few principal components of the cross-section of stock returns. We have shown that the
results are robust whether we compute these principal components from a set of aggre-
gate portfolios (Fama-French size and book-to-market portfolios or industry portfolios)
or from the whole cross-section of CRSP returns. This measure has two main advantages:
it accounts for changes in economic conditions through the risk-neutralization nonpara-
metric procedure and it is based only on stock returns. Not using option prices is useful
to extend the sample considerably but opens also the possibility to apply the measure
in markets where liquid option markets do not exist. Moreover a similar measure can be
computed for many other asset markets.

The series computed from 1926 to the present captures all main events that have
increased uncertainty in the economy, whether they find their source in the financial
market or in the political arena. It is therefore a tail risk measure that goes beyond
financial systemic risk. We have investigated thoroughly its relation with other tail risk
measures. For the option-based measures, our empirical comparison revealed that the
implications of both measures were very similar in terms of risk premia for short and
long holding periods. However we have shown that the nature of our series is very
different from the tail-risk measure proposed by Kelly and Jiang (2014). The latter is
very persistent and does not capture the big uncertainty events. In terms of forecasting

power of market returns our series has a good performance in the short-run while the
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Kelly and Jiang (2014) tail risk predicts well six to twelve months ahead.

Our extensive investigation of economic predictability has confirmed the usefulness of
our measure for capturing future conditions in employment, output or more comprehen-
sive measures of real activity. A detailed comparison with the Bloom (2009) indicator of
economic uncertainty based on volatility has shown that our tail risk measure adds new
information and implies different impulse response functions for employment and indus-
trial production. Finally, our measure predicts remarkably well the NBER recessions up
to twelve months ahead and the data-rich aggregate financial and macroeconomic indi-
cators of economic uncertainty produced recently by Jurado et al. (2015). Our limited-
information measure appears to be a very useful indicator to test theories of business
cycles with economic shocks or to estimate or calibrate equilibrium asset pricing models
with disasters, ambiguity aversion or disappointment aversion, all implying an important

role for tail events.
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Table 1: Principal Component Variance

Principal Component 1 2 3 4 5
Variance (Cumulative) 0.62 0.76 0.83 0.86 0.89

This table present the first five principal components
cumulative variance. The principal component anal-
ysis was performed for the whole sample (07/1926-
04/2014). Each month we compute the five princi-
pal components using the daily returns of the last
30 days for the 25 size and book-to-market Fama-
French portfolios, and the corresponding cumulative
explained variances. The reported figures are the av-
erages of the monthly figures over the whole sample.

Table 2: Correlations with Other Tail Risk Measures and Financial and
Macroeconomic Indicators

Hellinger S&P 500 CRSP  Bloom KJ BTX  VIX Macro

Hellinger ~ 1.0000
S&P 500 -0.3210 1.0000

CRSP -0.2433 0.9842  1.0000

Bloom 0.4572 -0.1333  -0.1498  1.0000

KJ -0.0723 0.0854  0.0802 -0.0202 1.0000

BTX 0.4303 -0.1293  -0.1341 0.3726 -0.2289 1.0000

VIX 0.5581 -0.3723  -0.3709 0.9288 -0.3820 0.6625 1.0000
Macro 0.4684 -0.0578  -0.0243 0.5809 -0.2210 0.4395 0.5548 1.0000

CATFIN  0.4507 -0.4146  -0.4385 0.3811 -0.0819 0.5206 0.6463 0.5422

This table present the correlation coefficients between Hellinger Tail Risk and other
tail measures. CRSP denotes value weighted CRSP stock index (07/1926 - 04/2014),
Bloom refers to Bloom (2009) volatility factor (07/1962 - 06/2008), KJ refers to
Kelly and Jiang (2014) tail risk index (01/1963 - 12/2010), BTX refers to Bollerslev,
Todorov and Xu (2014) tail risk index (01/19963 - 08/2013), VIX denotes the CBOE
volatility index (01/1990 - 04/2014), Macro refers to Bali, Brown and Caglayan (2014)
macroeconomic uncertainty index (01/1994 - 12/2013) and CAFTIN denotes Allen,
Bali and Tang (2012) systemic risk measure (01/1973 - 12/2012).

35



‘sosoyuared weam)aq parroder are Jey
oUO M pondurod SO19S1IRIS-7 1SOA -AOMON “UTN[OD ISIY O} UL PIJRIIPUL SIOJIR] 9} I0] [OIIUOD OM dIOYM SUOISSOIFI JO §,0 o) 110dol om soul|
SUIMOT[0] 9} U ‘suwinjal orjojprod a8eioae oY) 110del am oUI] SIY S} U] "UOIIRULIOJ-1SOd IUOUW SUO SUWINJAI I YORI} PUR SYO0IS 9} 1I0S oM
‘F10¢ [1dy 01 9661 Arenue wogy sjdures o Ul YIUOUW [Ded 10, *SWINISI Jsnpe-ysir 01 aampadoird AouedoIosip WNuIuIw 81} 03 SUIPI0dde sorjoyprod
10X IRW-01-}{00( PUR dZIS G7 9} WOIJ pajoeIlxe syuouoduos edourid oAl )1 Y} JO SUINJOI oY) WoIj poinduiod ST 1030e] YSLI [} oY} ‘g [oueJ
uy seotrd uworydo sesn pue (()00g) O pue ®IRYRS-IIY Jo £30[0poyjeu oLjewrereduou oY) 09 SUIpIodoe pajnduiod ST 10joe] YSII [Te) oY) ‘Y [oued UJ
“Ayroeded SUISPaY YSLI [TR) I8} 01 SUIPIOIIR PALIOS TT-(O dPOd YHM SY01S JSYHD [ JO SO1[0J310d 108D 0 PaydR)IR SWINIDI S} SOINJRS} S[(RY ST T,

(zL0) (91'1) (71°0) (20°0-) (2£0-) (100) (600) (L000-) (19°0) (¢1°0) (00°0-)

671 SV'T  ¢T'0  200- TIF0- 200 €10 600- 060 920 T00- TOATOITHNOWAEAL
(9¢'1-)  (8¢'1) (990) (620) (gz0) (szo) (r1) (zvo) (1zn) (FeT) (827T)

AR ST VPO 610  ST0  6T0  SET 980  FET  FLT  6ETF OIT+HINOIN+EAA
(291-)  (1¢1) (zg0) (og0) (gg0) (s¢0) (sz1) (8%°0) (9¢1) (BP1) (30°T)

€9'¢- 0T 8F'0  LT0 610 920  SI'T  L&0 8TT €51 L9€ INOIN+EAA
(L81)  (¢e1) (g0) (9g0) (9g0) (ev0) (6z1) (290) (es1) (ar1) (L12)

0v'g- L60  2e0 150 gT0 080 LT 60  SVI  T6T  LEE ead
(¢oz)  (81re) (zg1) (err) (oz1) (gz1) (961) (¢s1) (o) (92) (28e)

90°¢- T 880 €90 €0 VR0 88T gl 0g¢ 1LT  SFT umyey oferony
moT-uStH  UStH 006 008 00L 009 00 00F  00€ 00T MO o1[0J110J

SSIY (1R, ToSUI[e[

36

(z0°'1) (9¢'1) (e00) (g170) (69°0) (91°0-) (¢g0-) (z10-) (67°0) (15°0) (€€07)

ze'T T €00 €10 TL0  TT0-  L&0-  6T0- G80 360 680 TOATOITHNOW+EAA
(091-)  (¢o1) (290) (2900 (6%70) (890) (160) (9700 (gv1) (921) (2LT)

08°¢- €90 090 TFO  L£0 090 80T  I¥0O 69T  L&T  €FF OIT+HINOW+E4d
#s'1-)  (611) (8%0) (18°0) (sv0) (g90) (10T) (090) (6s1) (171) (207T)

0°¢- 90 1€0  SF0 080  SP0 €60  LP0  FST  ge€T  TlE INOIN+EAA
(¢re)  (o01) (ggo) (1zo0) (vo0) (220) GFr1) (zoo) (or1) (¢51) (2ee)

96~ 96’0 9¢0  O¥0  TI€0  €%0  ST'T  0S0 VLT LT 1I9€ edd
(cgz)  (ar1) (gzr) (391) (ge1)  (go1)  (981) (61) (6%2) (622) (L67C)

eLe- 060 180 .60 G680  LT'T 8T 921 S¥z €1 €9F umyey] o8y
moT-YStH  YStH 006 008 00L 009  00G  00F  00€ 00T MO o1[0J110J

AsTY [rer, parduy uondQ

SOI[0J}10J PoII0S IBSUI[[eH °SA uonnd( :¢ o[qe],



"$)INSaI A[IR2A I0] S8R T PUR S}MSsI A[yjuoun
10J e[ ouo ym pondurod ore sesoyjuared UeomIdq PoIIodal SOTISIPRIS-7 ISOA\-AOMON "TUWN[0D ISIY 97} Ul PIJedIPUl SI0Joe] 1) J10J [0IIU0D oM dI9YM
SUO1SSaI3al Jo 5,0 oY) 110dal am soul] SUIMO[[0] oY) U] ‘suinjal orjojriod aerasr o1y 110dal am oull 981y o) U ‘(g [oue) UoryeuLio] jsod reaf-ouo 1o
(V [oue) uorjeurio} 3sod [juoW-oUO SUINGOI IO} YORI) PUR SYO0IS oY) 1108 om ‘€T()g IoqUIaNd(] 0} L96T ATenigqo, wolj o[dures Imo Ul Yjuou [yoes I0]
‘(aImseowt IOSUI[PY) ¢'(- JO eWIRS © Yiim 2Inpadold AouedoIdsIp WNWIUTM 8} 03 SUIPIOdIR Pajsnlpe ore SWINgol oY, SOI[0j310d o IRW-01-0O0( pue
9ZIS Gg oY) WoJ pajorIjxe syuauoduiod [edourid oAl )SIg o) JO SWINGSI oY} Wogj painduod ST 10)0e] YSLI [1R) oy ], "Ajoeded SUSpoy SLI [Te} 1Y) 0}
Surp1oooe sotjoj3iod 9[109p ()T OJUI PAIOS dIe TT-(] 9POO YHM S003S JSH) oIoym ainpadoid orojprod Surlios a3 10j s)nsal oYy syussaid o[qes SIy [,

(¢0°1) (ee'1-) (179-) (89'e-) (18¢) (e8e) (097-) (9z¢) (¥9¢) (68°1-) (8€71)

9G°TT 6L'€-  Ce'8-  LL9-  T€8  T06-  FIIT- FGOI-  19°0T- STOT- FECT- TOA+OITHINONFELL
(coz)  (gg0) (9¢z) (¢ev-) (8¢%) (FO¥-) (09%-) (¥eg-) (9gz) (1871 (67°1)

867~ ¥6'0- ¢9'e-  80°G-  F6S- GG F0S- €T 68¢- 92T WOF OIT+FINOIN+E4d
(10z)  (91-) (gze) (L8¥) (66%-) (Lgv) (ecvy-) (89%-) (9z2) (gc1-) (€6°0)

667~ 6¢c- IT%-  ¥€9  019- OG-  68F CI'e-  ve¢ 78 09T INOIN+EAT
(or1-)  (or1) (6L¢) (BP1°6) (g0¢) (ee¥v) (60%-) (#9¥-) (19¢) (81%) (52°0)

Lre- oF'g- 8%~ 909-  199-  06G  I6F- 29  00F-  I9e LLO edd
(oT°¢-) (Lg2)  (v0z) (¥1) (sg1) (81) (e¥e) (622 (e8e) (voe) (67¢€)

PR €T- 669  09F  ¥O'E  L9€  GSF 909 609 €86  6T'TT €807 wmyey o8eiony
moT-uStH  UyStH 006 008 00L 009 00 00F  00€ 00T MO or[0J110J

@Oﬂwn.— wgﬁﬁﬂom Hﬁwxﬂ @QO “m EQ@&

(08'1-) (¢cz0) (eg0-) (oze) (00e) (86'1-) (e01-) (29¢) (ee0-) (€10-) (200

€8°0- 00 800- TI€0-  ¥E€0-  1g0-  FITO-  TE€0-  G00-  200- 280 TOA+OITHINOW+EAA
(6L°2) (87'0) (9¢°1-) (88¢) (voe-) (eLe) (17°0-) (L871-) (¥¢0) (€0e) (0670

¢ T- 900  9T°0- T&€0- 80~ LT0- S00- S8T0- L00  I€0  GET OIT+FINOIN+E4d
(or°¢) (Fe0) (eg1-) (c09-) (gee-) (cLe) (1v0-) (961-) (1¢0) (961T) (LT€)

021~ ¢0'0  LT0- €e0-  0€0- LT0-  S00-  6T0- L00 I€0  ¥TI INOIN+EAA
(60°¢-) (9v0) (L8T1-) (Pev-) (cee) (06c) (990-) (e1g) (680) (e81) (0z€)

CT'1- 900  ST'0-  G€0- TI€0- 820- 80°0- Tg0- <G00 I€0  1TT edd
(1%°¢-) (og'e) (6e20) (v21) (661) (910) (e8%¢) (19%) (ere) (L¢€) (S17)

zq'1- Z80 €50  8¢'0  8F0 9S00 880  WLO0  VOT 8¢l  FET ey odeiony
moT-yStH  UyStH 006 008 00L 009  00G  00F  00€ 00T MO or[0J110J

poLJ SUIP[OH YIUON 9u() 1y [ouRg

SOT[0J}10 }8¥IRIN-0}-3{00g pUE ozI§ G -

SOI[0J110d POI0g IOSUI[OH ¥ O[HL

37



‘synsax A[IeeA I0J SSe[ g PUR SIMSOI A[YIUOW J0J el ouo Yrm pojndurod
oxe sesaljuered UeamIa( PolIodal SO1ISIIRIS-] 1SOA\ -ASMoN] "UWIN[OD ISIY Y1 Ul POJRIIPUL SI010R] 91 I0J [OIIUO0D oM SISTM SUOISSAIFL JO §,0 9] 110dar
om soul] SUIMO[[0] oY} U] 'SuInyal orjojriod oFeroar o) 110del om ouI 981y 1) Ul (g [Purd) uoneuLio] jsod Ieak-ouo 10 (Y [PuURJ) UorjeuULIo] jsod
JUOW-OUO STINGOI 10} ORI} PUR SHD0)S o) 1I0S oM ‘€T()g IoquIesd( 0} L96T ATeniqo woij ojdures INo Ul YjUOW Yoes 10 "(oInseowr IoSul[[ol)
G'(0- Jo ewrures e YIm oInpodoid AouedoIosIp WNWIUIW oY) 0} SUIPIOodR pajsnipe are suIngol of ], -owr Ul jurod Aue je d[(e[lRAR SOIILINIAS JO 198
oloyM o7} WO pajorIlxe sjueuoduod redurid oAl 4SI oY) JO SWINGOI o) WOl panduod ST 1030v] SII (TR} o[, "Ajeded SUrspoy SU [k} IPY) 0}
Surp1oooe sotjoj3iod 9[109p ()T OJUI PAIOS dIe TT-(] 9POO YHM S003S JSH) oIoym ainpadoid orojprod Surlios a3 10j s)nsal oYy syussaid o[qes SIy [,

(80°1) (0g1-) (L) (eov-) (9g¢) (ege) (eve) (eve) (voe) (19e) (1971°)

G8'G 06'G-  €6'6- 186~ F0'8-  1g'8-  SGTII- ST0I- 996~ ST'0T- FETIT- TOA+OITFINON+ELL
(or1-)  (or0-) (182) (s6°¢) (erg) (erv) (68¢) (z6¢) (692) (6V2) (S1°1)

0T°¢- 02°0- 99'¢-  68F- SIS 6VG  ILF-  89F-  19¢  €1e  167C OIT+FINOIN+E4d
(ee1-)  (06°07) (00¢) (e19-) (or¢) (69¢) (982) (6¢¥-) (cze) (1we) (L90)

12°¢- L9T-  66'¢- LTS FOG-  €T'S-  OFF-  FES- F6'e- 936 FCT INOIN+EAA
(1e1)  (¢e1) (wge) (rev-) (119) QLrey-) (9vr'e) (89%-) (gee) (882) (¥9°0)

0% ¥~ 0£2-  99°%- 8%  €9¢ 08¢  89'G-  g8G-  OLT- €8T 06T edd
(26'2-) (L82) (¥6'1) (e81) (061) (9871) (s0@) (8ge) (eLe) (86) (0L¢€)

886~ 06  9%F  8¢F  9ST ¥V F9G  9%9 8T8 €e0T €681 wmyey o8eiony
moT-uStH  UyStH 006 008 00L 009 00 00F  00€ 00T MO or[0J110J

@OE@N— WQMUMOE Hﬁwxﬂ @QO “m Bgdnﬁ

(eL'1-) (¢90) (8L%) (ge1-) (102) (8¢c-) (eLe) (601-) (98°0-) (s20-) (120)

LL0- eT0  620- 9T0- 10- 920- 2€0-  LT0- €10~ F00- 060 TOA+OITHINON+EIL
(¢¥'c) (LL0)  (38c) (8¢1-) (L8T-) (121-) (0ge) (ee0) (690) (180) (2L

eT'1- gro  Sg0-  610- ¢r0- 8T'0- €0- OO0 800 IT0  STT OIT+FINOIN+E4d
(69°2) (eL0) (96c) (66'1-) (8¢'g) (e21-) (912) (9z0) (190) (820) (10°€)

G0'1- 110 920- 2g0- ¢r0- 8T0- €0- €0 L0 110  9T'T INOIN+EAA
(652-) (c60) (e8c) (8ze) (e8c) (L61-) (1€2) (Fr0) (920) (290) (20°€)

860~ ¥I°0  S20-  ¥C0- ST0-  020-  FEO- 200  FO0 800 €T edd
(86°2-) (ge'e)  (60c) (122) (see) (6ec) (gec) (goe) (1e¢) (12¢) (607)

8¢ T- 160 S0 090  FS0 990 290 €60 0T  TIT  ¥3T ey odeiony
moT-yStH  UyStH 006 008 00L 009  00G  00F  00€ 00T MO or[0J110J

poLJ SUIP[OH YIUON 9u() 1y [ouRg

SOIILINDAS [[V - SOI[0J}10d POlI0Sg JOSUI[[OH :§ 9[qR],

38



"S)INSaI A[IRAA I0] S8R ] Pu® S}MSoI A[Iuom 10} el ouo Yim pojnduiod a1e sosoyjuored usomioq pojrodol so1)sryr)s-1
159\ -A9MBN] "UWIN[OD JSIY SYJ UL PIIRIIPUL SI0J0R] 8} I0] [OIIU0D 8M SI3M SUOISSAIZDI JO §,0 o) 110del om Saul] SUIMO[[O] oY) U] ‘Suanjal orjojyrod
o8eroa® o) 110doI om ouIf 181 o) UJ *({ [oueJ) uoljeurio] jsod 1eaf-ouo 10 (Y [pURJ) UOIYeuLIo] 3s0d [IUOW-OUO SUINIOI 1181} JorI) PUR SYO0IS o)
110S oM ‘€T(Z IoqUIOd(] 03 L9GT ATeniqo woly o[dures IO Ul YIUOW [P IO Uorouny Aysuap Arqeqold snoouwedowoy e SUrunsse pajemored st
[[BJHI0YS pojoadxo YSLI [1R) 9A1309[qO o], 'so1[0j1I0d JoxIeUI-0)-00(q PUR 9ZIS Gg oY) WOIj pajorIjxe syuouodwod redourid oAl SIF oY) JO SUINIOI
o) wogy pojndurod SI 1030RJ NSII [Ie) 9, "SOINSBOW YSLI (IR} 9AI}09[(O PUR [RIJNOU YSLI Usam)o(q Orel oY) 03 j0adsor Yym Ajeded Sursper] Ie1) 0}
Surp1oooe sotjoj3iod 9[109p ()T OJUI PAIOS dIe TT-(] 9POO YHM S003S JSH) oIoym ainpadoid orojprod Surlios a3 10j s)nsal oYy syussaid o[qes SIy [,

(cL'1) (88°0-) (69°¢) (997-) (cov-) (L&) (g6'e) (99¢) (s¢g) (61%) (€671-)
65T ¢T'z-  L29- €08~ TVl 86'L- 288 LTIT- LFOT- 0TE€I- FLSI- TOA+OITFINOW+ELL
(zv°0) (¢80) (67'e) (8v¢) (9g¢) (eve) (119) (919%-) (88°1-) (201-) (L80)

6L°0 W1 ¥8€  L0G  08¢  OLF-  L9G-  CEG- 00 69T~ 290 OI'T+HFINOIN+Edd
(60°0-)  (8T°00) (81%) (1¢¢) (L8%) (9r%) (80%-) (8¢¥-) (¥zz) (0F'1-) (F0°0°)

LT°0- 80°0-  S¥VF-  L0G-  €0G-  60°G- GG 6€G-  ¢ge-  18E 0T0- INOIN+E44
(¢v0-)  (cor) (Lev) (09¢) (L0g) (FOF) (¢F¥F) (9v%) (6¥2) (20c) (ST°07)

611~ 0LT-  LL¥- 196 89G-  gee-  86'G- 186G 10T 6£¢ 160- edd
(8¢2-) (oze) (vee) (68°1) (F81) (e61) (88°1) (812) (e82) (00€) (L¥¢€)

Ly L 00T  9F'¢ ITF  OTF  68%  9¢F  66G 678 LTOT  L6LI WMoY 03eIoAY
MO - USTH  YSIY 6 8 L 9 G % ¢ é ey | OT[0J}10]

polJ SUIP[OH IedX ou() :f [oueJ

(97°0) (L1e) (1e1-) (29¢) (og1-) (ee1-) (e12) (S1@) (8¢0) (81°0)  (0€T)

zro er'o  LT0-  FE0-  9T0-  1T0-  9Z0-  SZ0-  ¥O0 900 080 TOA+OITHINOWN+EIA
(18°1-) (coz) (9gz) (9ge) (9e1-) (Le1-) (0ge) (1e1-) (260) (801) (g9¢€)

v o- €e’0  €¢0- L0~  gro-  Sr0-  ¢g0-  FTO-  ¥IT0 9v0  GLO OITHFINOIN+E4d
(66'1-) (e8'1) (ove) (9ve) (901-) (eg1-) (9ve) (ge1-) (980) (60T) (19°€)

970~ 620  €¢0- 8¢0- 0T0- LT'0- ¥20- ST0- €0 880  FLO INOIN+EAA
(66'1-) (6L1) (8¢z) (1Le) (se1-) (e21-) (892) (gv1-) (080) (90T) (g6°¢€)

970~ 820 SZ0-  0€0- €T0- 8T0- S¢0-  9T0- IT0 980  FLO edd
(0g'2-) (¢8'e) (9zc) (s0e) (L92) (9ve) (8ce) (69c) (sge) (167C) (927)

L9°0- LTT %90  6V0 <90 190 690  LL0  ITT &1 8T ey odeiony
MOT - YSIH  YSiH 6 8 L 9 G i ¢ z Mo OI[0J310]

poLJ SUIP[OH YIUON 9u() 1y [ouRg

SOI[0J310J POIIOS - [[JHIOYS SSIIXH 9AI1100[q( Jopun aansesaN MSIY [TBL :9 °o[qe],

39



"UOZLIOY SUISRIDIO) gT - T I0J SSe[ ¢ - ¢ M XLIJRW dOURLIRA
1SOA\ AOMON SUISTL POJRINOTRD dIR SOIISIIRIS-] “( [oURJ Ul POIOPISUOD SOINSBOUL 9AT100dSdI o) 09
surpuodser10d serdures SNOLIRA I0] 2INSRIW ISLI [IR) IOSUI[[oH YY) JI0J UOISSOISal SRS o) UILI
om y [PuRd Uy *(€10%/80 - 9661/T0) dImseaur YsLt [1e} (GIOg) NX PUR AOIOPO], ‘AS[SIO[[Og pue
(¥102/%0 - 0661/10) Xopul XTA 943 ‘(2102/21 - £L6T/10) SINSLIUL SLI OTUWI)SAS (ZT(0E) Sur, pue

ored ‘WOTTY ‘(010g/2T - £961/T0) dmseow JSI 18} (F10g) Suetf pue A3 *(8002/90 - 2961/L0)
Aytmyeroa (600g) woorg ‘YSTY [re], IOSUIPH :sojqerres A1ojeur[dxo se (stsoyjuored ur ofdures)

SOINSROUIL S (1Y, [RIOURUY SUIMO[[0} oY) IoPIsuod oA\ 4=y 4 1=ty 1o + 0 = [+, :suors
-so1301 wor}orpeld SUINOl XOpUl JoyIewl pojySom anfes JSY) 10§ symsor syuosord o[qe) STy,

(88°0) L0°0 (¢s'1) 120 (692 Lo (622 ¥weo (c00) 100 a1
(92°0) 90°0 (8¢'1) 020 (6ve) <0 (612 ¢e0 (800) 100 1
(6L°0) 90°0 (291) o0z0 (zge) €0 (s0e) ogo0 (020) @O0 01
(¢9°0) G0°0 (841) 0z0 (2@ coo (112 og0 (ze0) €00 6
(¢8°0) 90°0 (v0z) ce0 (cze) 10 (o1e) oeo0  (170)  ¥0°0 8
(06°0) 90°0 (1ee) €0 (e¢1e) 610 (S8¥e) 180 (LL0) 200 L
(62°0) 90°0 (¢sc) ©o0 (F02) L10 (282 650 (960) 800 9
(86°0) 80°0 (¢v'z) 120 (681T) <ro (19¢) ogo0 (¢TT) 800 G
¥8°0) L0°0 (10e) 210 (L271) ero (gge) 920 (L&T) 600 iz
(80°1) 60°0 (¢91) ¢ro (¢91) oro (¢61) 610 (FLT) 010 ¢
(8¢°0) 700 (¢r1) 1o (91) 600 (1) <ro (1re) 110 e
(€2°0) 700 (00'1) 200 (8g'1) <00 (e11) 110 (86'T) 800 I

7 NIALVO 7 XIA 7 i 7 X1d 7 woorg  45vIRI0]

SOINSLITN ISTY [Ie], WY1 ¢ [oued

(¢50) 500 (180) 110 (00'T) 800 (¥21) 610 (2F0-) 200" el
(85°0) 500 (.8'0) cro (¢o1) 600 (P21) 020 (8%°0-) €0°0- 1
(€9°0) 90°0 (.8'0) ero (s01) 600 (121) 00 (6V°0-) €00- 01
(L9°0) 900 (180) 110 (02'T) 600 (PT'T) 810 (€80-) 200- 6
(c0'T) 80°0 (¢crt) ¥ro (#91) 110 (F1) 120 (120) 10O )
(LT'1) 60°0 (ze'1) 210 (61) ero (121) @zo (260) €00 L
(12'1) 80°0 Fr'1) cro (L61) ero (691) 150 (650) €00 9
(08°1) 110 ¥6'1) 10 (292 ¥ro (oze) €0 (0ST) 900 g
(90°2) zro (8L1) ¢ro (62 <ro (tee) 150 (06T) 800 id
(ce) €T’ (¢s1) zro (60¢) <Sro Qa 1) 1o (19%) 010 ¢
(LL1) 010 (90'1) 800 (s¥e) ero (¢e1) 110 (88T) 010 4
(18°1) 80°0 (cg0) €00 (e¢ve) oro (9e1) oro (06T 010 I

7 UL 7 UL 7 UL ? UL 7 MI  98e092I104

ASTY (IR, 1OSUIPH ‘Y [oued

SuIney IR\ SuIldIpald :J o[qe],

40



(coz) o0zo (89°0) €00 (gve) 1¢0 (8ew)  ogo0  (621) g0 (¢01) or0  (£9°T)  0T0 zl
(erez) 120 (6%°0) oo (ove) 6c0 (8ew) 60  (0L1) 180 (60'T) or0 (9S°T)  0T0 1
(orz) o0zo (¢z0) 100 (68T 8¢0 (LeT) 80 (8¢T) 610  (61°1) o010 (99°T) 610 0T
(L61) 610 (61°0) TOO (8¢T) Lzo (9gT) Lzo  (ogT) 80 (02T) 600 (9S°T) 610 6
(68°T) 810 (g00) o000 (8¢ 9z0 (¢eT)  9z0  (6eT) Lo (1¢1) 600 (9S°T)  STO 8
(68°T) 81°0  (9g70-) ¢o0- (o¥e) g0 (&%)  ¥eo  (oer) 90  (eer) 600 (99°T)  LTO L
(o81) .10 (¥L0-) <coo0- (P¥2) €0 (68c) g0 (ser)  <cro  (911) 600 (SST) 910 9
(cr1) 9o (g60-) 800- (1¢2) 1g0 (¢¥e) 160 (P21)  ¥ro  (0r'1) 800 (9S°T)  ¥IO G
(er'1) ero (g60-) oro- (s¢e) 610 (¥sz) 610 (ze1) €0 (s60) 900 (69T) €10 id
(¢or) 600 (sv1-) ero0- (8¢e) 910 (65T)  9r0  (FFT)  ero  (690) ¥oo (1971) 110 ¢
(060) 200 (gee) <ro- (we) ero (ove) ¢ro  (ov1) oro (sv0) €00 (SP1) 800 z
(vor) 900 (6L¢) sr0- (12 600 (91%) 600 (6eT) 00  (se0) oo (0€T) 9070 I

7 SAd 7 AS 7 Ad 7 vdda 7 vdd 7 da 7 NG 1880010

(‘pauoD) v Pueq
(1ro) 100 (8%°0) €00 (6€71) 600 (gzT) 800 (6€T) 600 (8¢0) ¥OO (£1°T) 800 el
(8r0) 100 (8¢°0) ¥00 (g¥1) 600 (8&T) 800 (g¥1) 600 (990) ¥O0O (ST'T) 800 1
(ee'0) oo (820) <so0 (091) 600 (9FT) 600 (091T) or0 (g80) <00 (s€T) 800 01
(020) eoo (1rr) 200 (00 10 (98°1T) oro (ooe) 10 (02T) 900 (PLT) OTO 6
(e80) wvoo (1e1) 800 (sge) 110 (0re) oro (tee) 10 (geT) OO (86°'T)  0OTO 8
(¢g0) ¥v00 (FFT) 600 (8ge) 110 (¢re)  oro (sze) 10 (8¢T1) 00  (10G)  OTO L
(vor)  goo0 (00w @0 (s9) ero (ose) 1ro (99 ero  (191) 800 (g¥e) 110 9
(9z'1) 900 (1€%) ¥10 (eL2) ¢€ro (69c) cro (e8e) e€ro  (e81) 600 (9¢@) ErO G
(L91) 600 (e8w) 210 (892 +¥ro (09c) ¥ro (98 <cro (10e) 10 (69 WIO id
(eet) oro (6re) 610 (0Le) wro (¢9z)  ¥ro (96 <cro  (L1e) 10 (89T WIO ¢
1) 900 (1ze) 910 (€971) 600 (19T) 600 (96T) 1T0  (9¢71) 800 (291) 600 z
(8r0) 100 (6T7) @TIO (690) €00 (650) €00 (2200 ¥oo (gv0) o0 (850) €00 I
(SAQ) (AS) (AQ) (4da) (4da) (aa) (Ng)
7 UL 7 UL ? UL 7 UL 7 UL 7 UL 7 MI 1880210

ASTY (IR, 1OSUIPH ‘Y [oued

suoissaI39y (800%) [eA0H) pue US[OAA 8 9[qR],

41



P01S (X

"g10g 10quIodd(] 03 g961 Amr :o[dureg
"U0Z1I0Y SUI)sedaIo] g1 - T 10J S8e[ Fg - ¢ UM XLIYeUT 90URLIRA 1SOAN-AomaN] SUISn paje[nores are sorgsiyels-7 “jred Iomo[ o) Ul So[qerrea
[0IU0D [RUOIYIPPR 9} 10J JUSIIJO0D pajyeurr)ss o) pue jred roddn o1y ur Yty [1e], IOSUI[[OY 9} I0] SIUSIOII0d PIYeIIse o1} Juasord
om ‘g pue y spued yjoq uj ‘(FHN) uotsuedxsy Aymby joN pue (YgI,) orey (g Amseai], ‘((SI) peoldg wol, ‘((MYIT) sSumidy Jjo
1Ry WIRT,-8u0T ‘(A L/T) PPIA WId-8uo ‘(-guy) uonequl ‘(SYQ) peards wmynyg ymejp ‘(SAQ) pea1ds pPIX 1nee ‘(AS) souetres

) PRIA PUOPIALJ ‘(Yd() omey 90l PUSPIAL( (YdH) owey ool ssururey ‘(J(1) Mmosed puoptarq ‘(A

q) 9o5IR]\ -0}

-jooq :s10901paid pakesns (8007) YITOA PUR [RAOX) 81[) 91BIIPUI ( A\ )) S[OIIU0D [RUOTYIPPY "SSIY [IR], I0SUI[OH o1} S91edIPUl YT, 9I9YMm
M4+ P4y g +0 = BT suotsserSer uorgorpeld SUIMGOI XopUl JosIeul POjySomM-on[eA JSY) 10§ synsol syuosord o[qes iy,

(¥ro-) ¢oo- (ger) ero  (€91) 910 (gge) ero  (6¥e) €0 (101-) 800- (120)  ¥00 4
(¢ro-) @coo- (orT) 110 (PCT) ST0  (667T) 10 (9z2) 120  (68°07) 200 (990) %00 1
(¥ro-) eoo- (10r) oro (9v1) ¥ro (88%) 110 (g0T)  0z0  (¥6°00)  L00-  (L5°0) €00 0T
(zro-) eoo- (we0) oro (ge1) ero (gze) €10 (L8T1T)  8T0  (€6'00)  L00-  (ST0) 100 6
(800-) 100- (2800 600 (617T) ero (ege)  ¥ro  (89°1) 910  (96°0-) L00- (81°07) 10°0- 8
(800-) r100- (820) 800 (gr1) oro (1¥¢) gro  (9¥1)  ¥T0  ($8°0-) 900- (290-) €0°0- L
(L00-) t100- (690) L00 (¥0T) 600 (gze)  ¥UO  (8¢1) &ro  (990-) <00- (L9°07) ¥0°0- 9
:o 0) o000 (1900 <goo0 (2600 so0 (80¢) €0 (FrT) o010 (€907 F00- (9L0°)  F0OO- g
(g00) 1000 (6S0) g00  (¥80) 900 (P8T) 600  (1UT)  S00 (1€0°) 200~ (9¢07) 200" iz
(L00) 1000 (#9°0) ¥o0 (g80) <00 (6v1T) 00  (¢TT) 800  (IT°0-) 100- (8¢07) T10°0- ¢
(800-) r100- (9¢0) €00  (]0T) 900 (002 600  (901) 900 (¢00-) 000 (LL07) FOO- e
(¢z0-) 100- (820) 100 (L&1) <00 (ore) 600  (180) €00 (88°0-) ¥00- (S8T'T)  GOO- T
7 HAN 7 vaL 7 SL 7 TUIT 7 AIT 7 “BuI 7 SQUA 1580010
pAuoD) g pPued
(¢90) so0 (880) 900 (zg0) €00 (2900 Foo  (280) 900 (£90) FOO  (8L°0) SO0 A4
(cz0) so0 (g60) 200 (190) ¥00 (sL0) so0  (¢60) 200 (€20) <00 (98°0) 900 1
(680) 900 (orT) 00 (6200 ¥00 (¥60) 900  (60T) 200 (680) <00 (FOT) 900 0T
(ee1) 00 (9F1) 600 (91'T) 900 (geT) 00  (¢vT) 600  (LeT) 00 (€FT) 800 6
(ez¢'t) 800 (L91) 600 (peT) 00 (PST) 800  (691) 600  (FFT) 00  (F9T) 800 8
(¥1)  s00 (er1) 600  (gbr) 00 (PGT) 800  (¢21) 600  (1¢T) 200 (99T) 800 L
(e81) 600 (1rz) oo (921) 800 (06T) 600  (rre) o0  (98T) 800 (66T) 600 9
(61z) oro (eee) 110 (66'T) 600 (L0@) oro  (oge) 110 (P0T) or0  (¥1T@) 010 G
(o¢z) ero (¥e) ero (¢re) 110 (1ge) oo  (1ve) €10 (b¢e) er0 (J2@)  al0 id
(ogz) ero (sye)  ero  (Lre) 1ro (sge) ero  (gke)  ero  (8gw)  Tro  (8TT) TIo ¢
(o) 800 (Pc1) 600 (LzT) 00 (ze1) 800  (zer) 600  (16T) 800 (2€T) 800 z
(#¥0) coo (og0) €00 (¥e0) oo (og0) woo  (zg0) €00 (P€0) @00 (L80) 200 T
(AAN) (49.1) (S1) (1ar7) (AIT) (‘ur) (sua)
7 UL 7 UL 7 UL 7 UL 7 UL 7 UL 7 MI 1580010

S9[qRIIBA [0IJUO)) :( [oueq

(p.Juop) suorssaiSey (8002) [eA0D pue YI[OM

42



"SHTNSI
UOISSAISaI }1OIJ U} SPN[OUL oM d[qerres YN oY) 10 'SSe[ Fg YIM XIIJeU JSoA\ pue KomoN SUISN Poje[no[ed aIe SOI3sIjes)s 7
IV "elqelrea snous3opus o) Jo s8e[ g I0] [01JU0D suolssal1dal [[y “(F10g/%0 - G861/10) (G10g) Star( pue woolq ‘Iayded Jo Xopul
Ayurel100t() Ad1[0J dTouody oy syussaidor N Pue (F10Z/F0 - ¥661/T0) XOpUJ SSoI1G [RIDURUL (H.] SNOT ‘1§ o1} 10] Spue)s
smoT 18 (FT10Z/%0 - 096T/L0) A[oA1300dsol Xopul AJUIR)I0dUN DIWOUOIV0INRUW pue [RIDUWRUY (GT(0Z) SN PUR UOSSIAPNT ‘opueln
S0YEOIPUL “}100U[) ORI\ Pue ULy ‘(F103/F0 - L961/50) Xopu] A)anoy [euoneN (ud oseory) oy spueserdor TyNAD (F102/10
- 926T/,0) Awrmmp potrod worsseoal e syuaseIdor YHAN ‘(F10¢/70 - 0661/T0) XOPUI I0JRIIPUI OTWOTOII0INRT (TH, ] A1) Sesuey]

oty syuasaxdar qQHAD ‘(F102/%0 - 0961/30) 10YedIPUI AJTAIJOR DTUIOUOIDOIIRU 11)00G PUR Plogal( “eqonty o1) sjussaidal SV
“(stsetjquared ur oydures) SI0JRIIPUI DIWOUOIDOINRUIL JO A)JOLIRA © IO0] SUOISSIS0I UO0IoIpald o1y 10 9nsal a1} juosoid o[qe) ST,

43

veo  (e72) €10 ¥00  (69°0) z0°0 €00 (gg17) €00~ c00  (18°1°) L0°0- z1
ge'0  (GLT) o €00 (¢e0°) zoo- €00 (81T 80°0- €00 (90°¢) cr0- 1
or0 (so1) 900 ¢o0 (ggT)  FrO- €00 (06°1-) 60°0- c00  (g0¢) 0T0- 01
o (980) 00 <00 (01 80°0- 700 (1€2) 110" c00 (€8°¢) 110" 6
o (or)  ¥00 <00 (g0 v00- €00 (0671 110" 700 (8¢¢) 9T°0- 8
0 (Fze) 600 900 (087T) 9T'0- €00 (91°C) ero- €00 (99°2) ero- L
o (0600 00 900 (6L71) PI0- €00 (¢8T) zro- €00 (€9°¢) zro- 9
870  (¢0T) 00 900 (€9°71) L10- €00 (99°T-) ero- 700 (99°C) V10" q
zgo  (280) €00 600 (LFT) ¢z’0-  ¥00 (9T'T) LT0- c0'0  (0F'¢) 91°0- i
960 (g1°¢) 110 800 (1672 ¥2'0- 200 (LT'T) P10~ 00  (L¥¥) 02°0- ¢
190 (0s¢) 600 oro0 (18C) ¢z0-  ¥10  (69C) 91°0- o (L1 920" 4
L0 (8rv) 800 <ro (1871 LT0-  Tvo  (¢gT) 01°0- ce0  (we) ce 0" I
Nm 7 Dm@ mm i wﬂDOQ .uw mm i :.E@UQD OHU@E Nw i .u.HQUED Qﬂm uwﬁoo.HOrm
q [oued
700 (69°T-)  0OT°0- €00 ¥L¢ 4l 610 (0.0 L0°0" 700 (96°07) 600~ 4
600 (L&T-)  L00- €00 08¢ er'0 ¢co  (€01°) zro- 900 (6L0°) 70°0- 1
900 (92°1-)  S00- SO0  LGe- 0%°0 920 (82°1-) 8T°0- 800 (6€0-) 200~ 01
600 (991-) 200~ L00 Gge- €0 6c0 (ST'T-) 9T°0- 010 (L5707 €0°0- 6
010 (0L0) €00~ 010 9¢¢ 4l ee0 (eg17) 8T°0- ero  (g9°07) €0°0- 8
Zro (280 €00~ <0 <9¢ ey wo (9271) 120" v1o (5707 20°0- L
91'0 (681-)  L00- TTO LTE ev'0 670 (97°1-) 020~ L0 (92°07) €0°0- 9
610 (89T-) 900~ 00 ¥ze ¢H0 9¢'0  (0¥'1-) LT°0- ce0  (LoT) 70°0- G
Lz0 (68T-) 800~ 0V0 SPe- ¥S0 ¢90 (6€71) 9T°0- 0e0 (L8717 ¢0°0- i
9¢'0 (L6'z-) T1°0- 090 L& 860 720 (501-) 60°0- 6¢0 (0v2) 80°0- ¢
97’0 (28¢)  2ro- 290 09T g0 180 (€5°07) €0°0- cs0  (60°¢) 60°0- 4
¢g0 (082) 010~ 8L0 LI'E 69°0 c6'0  (L207) 10°0 780 (0L2) G0°0- T
M 7 IVNAD 4 7 AIN 4 7 AN . 7 sav 1580010,
v Pued

SUOISS9139Y UOIIPald AJIAIIDY ITWOUOID0IIRIA 6 O[R],



"S8e[ g UM XLIyew
JSOA\ PueR AoMoN SUISNL SO)R[NO[RD IR SOI)SIIRY)S ] [[Y "SOOULIDHIP ISI I0J UOISSOISal oY) uLIojrod om oS
(T)1 st (F10g) ueAe[8e)) pue umolq ‘Ieg "oO[(eRLIRA SNOUSZOPUD d1[} JO SBR[ 7] I10J [0IJUO0D SUOISSOIZOI [y

(2102/21 - €L61/10) oansesut Ysi otwaysAs (Z10g) SUeT, pue [eq U9y s930usp NILAVD PUe (€102/21 -
V66T/T0) Xopul A)jure)Ieoun dIOU0S0IRW (FT()g) Uede[3e)) pue umorg ‘Ieg 03 siojol oIRIN ‘(£T0%/80

- £9661/T0) Xoput ¥sia [re} (F10z) nX pue soiopo, ‘adpsiofiog o} s1301 X.1d ‘(0102/2T - €961/10)
Xopur YsII [1e} (F1(g) Suelf pue Aoy 03 SIoJor 3 -o[qelrea Arojeur[dxo se STy [IR], IOSUI[[OY oY)
uSISn SoXopul YSIY [IR], JO AJOLIRA B IO0J SUOISSOIZ0I UOIIpald oY) 10J Jnsol o) juosord o[qey ST,

LT0 (¢8°0-)  ¥00- 650 (8¢'e) ¢1T0 €00 (¢91-) G100 ¥veo (28T)  ST0 0021
020 (0¢0-)  €00- 190 (882) €10 ¥00 (660-) 800 6£0 (LLT) F1°0 00°TT
zz0 (€9°0-)  €00- 290 (62C) 600 00 (F8T-) €10 9v0 (29¢) ¥I0 00°0T
vz0 (¢L0°)  F00- <90 (0€2) 800 <00 (96T 110 €50 (86'T) CTO 006
20 (1600)  900- 990 (¢vz-) 800 ¥00 (FI'T-) 600 650 (Sr¢) GI°0 008
8z°0 (9¢'1-)  600- 690 (L92) 600 800 (¢82) 0z0 €90 (IF¢) L1°0 00°L
0¢0 (902)  Tro- L0 (692) 800 900 (9F1-) 800 1.0 (IT°¢€)  L1°0 009
pe'o (ere)  ¥I0- wL0 (28710 S00 0T0 (P10 ¥IO LL0 (€8°T)  ST0 00°G
ve'o (IP'1-)  900- 2.0 (112) <00 110 (06T-) 800 €80 (0Fg) ST0 00F
6£0 (291-) 200~ 080 (S0Z) ¥00 ST'0 (ST'T-) GI'0 880 (8T%) 810 00°€
er’0 (L8T-) G00- 2’80 (ge1-) €00 00 (¥62) ST0 @60 (08°T-) 110 00C
pe'0 (€€°0-)  T00- 880 (LT'T0) 200 SF0 (FI'Z) 2€0 960 (88°T)  F0°0 00T
& 7 NIALVD 4 7 [ » X1d M 7 OIRJ 1SRIRIOY
seansesJA MSIY [Te], 19710 JO UOIDIPaLJ (0T 9[qR],

44



"s[nsal A[IeaA I0J S8R ] Pu® SIMNSOI A[IUOW I0] SR 9UO [IIM
pondwod are sesoyjuated Uoomiaq palIodol sO1ISIIRYS-7 1SOA\ -AomON] "sOI[0J310d MO snura YSTH o3 I0] sonjea
o) 310do1 ATUO 9p\ "TWIN[OD JSIY YY) UL PIJRIIPUL SI0JOR] Y[} I0J [OIJUOD OM SIdYM SUOISSIISAI JO §,0 1) 110do1
oM Soul] SUIMO[[0] 93 U] ‘swmjal orjojrrod oFerese o) 10der om auI[ JsIg oY) Ul (g [pued) uoryeurioj 3sod
Ieaf-ouo 10 (Y [ouRd) UOIpeuLIO] 4sod YIUOUI-OUO SUINGDI IDT[) JORI) PUR SYI0IS B} 1I0S oM ‘@T()g IoqUISd_(]
01 961 Areniqeq woiy o[dwes IMo Ul [IUOW [ord 10 POYSeI) YA 9} %G pue sAep Jo Iequunu o1 (I
‘posn syuouodwion Tedounid jo Iequunu o) sejouep HJ (PloyseIy) YeA %07 pue syueuodwod edoutid g
‘suInger sAep ()¢ ‘G')— = A) 9SeD SUI[PSR( AT} PUR POIOPISTOD SINSLIU JSLI [TR]) oY) UOOMID(] SOOUSISHIP 9JRITPUL
SUWN[Od 9, "SI [re} o0} joodsor yym Ayoededs Surdpoy Io7) 0} SUIPIoddR SO10])I0d S0P ()] OUI POIos
aIe TT-0T 9POo YNM SY209s JSHD) 2Ioym ainpadoid orjojprod Suilios oy} I0j sHMsSoI oY) sjyuasaid a[qes} SIyJ,

780 8€'T L9°0 ¢6°0 91’1 0c'1 16°0 080
ery  CELT €98 298 LT LEET 9001 096  TOATOITHINON+EAL
6L¢-  8I'l- 81~ 060~ 6¢1- 991~ 0OFe Ve e

9L9- L9¢ &%y  40c  60¢  9L€E- 684 019~ OIT+INOIW+E4d
v6'1-  L6°0-  L8T- 890~ OFV'1I- TIL°T- 6¢ ¢ ¢c0'¢-
8y~ cve- Y- 191 0€¢- 807 89°G- 06°G- INOIN+€4d
g¢'1- 010~ €€1- ¢c0 ¥80- ¢80 8¢~ 10°T-
8Ty~ 600~ €9¢ 990 6I'¢  LI'¢C 8L°€- L0°€- €dd
€9¢c- 19¢  vie Ive c0¢e  88¢C €Ce 90°€-
ILy1- ¢€ 11~ L9°GI- ¢¥6- €vcl- Locl- 09¥%1-  L9¥I- Moy 9FRIOAY

poLJ SUIP[OH IBdX dU() :{ [oue]

45

€91- 9¢'1-  €¢I- 0L0- 9€1-  C9'1- 60°¢- 6L1-
89°0-  L9°0- €90~ 0€0- 090 ¥L0- 96°0- €8°0-  TOA+OITHINON+EAT
vv'e- 81'¢- ¢oLe- 0¢¢  1¥e  L9¢C v0°€- ¢8'¢G-

€r'r- 860~ 6¢'1- <01~ €I'1- 1I¢1- 6€°1- 6¢ 1~ OIT+INOIN+Edd
€9¢c- cec 96'¢-  8€¢ 1L c0€ 9¢°¢- e
€0'T- 980~ 6I'T-  €60-  L0T-  ST'T- 6C1- ¢G1- INOIN+€44d
19¢- 0¢¢- <¢0¢  LEC €LC  10°¢ gee- 80°¢-
66'0- 6.0~ 61T~ 160~ 401~ OIT- ve1- LT°T- €dd
vee- ¢6¢c- 89¢- 98¢ 9TE-  CeE 19°€¢- 9¥°€-
¢G'1-  6¢’1-  891- 8C'T1-  LE€T- CV'I- ¢9'1- Ga'1- Moy 9FRIOAY

%s Ao aAsy OdOor T=4 0=4 I-=4L ¢g—=4L
poLg SUIp[OH YIUOJN 9u() 1Y [ouRg

OI[0J310J POII0S :SsauIsnNqoy :IT 9[qr],



(L607)  <cre-  TOATDITHFNONW+ELL  (620) 10°0 (06°T) 60°0 (¥5°0) 700 (¥5°0) €00 4
(¢9c) ©Lg- OI'T+HINOIN+EA A (2z0) 10°0 (16°1) 80°0 (9¢°0) 700 (28°0) 500 I
(tee)  L97- INOIN+EAA (sT°0) 10°0 (8L°1) 80°0 (€€°0) €00 (92°0) 70°0 01
(061-)  8¢¥- edd (97°0) z0°0 (€1°2) 60°0 (0z°0) 200 (52°0) 70°0 6
(9¢'¢-)  <oTI- oBeIoAy (Le71) L0°0 (25°2) zro (¥5°0) 700 (0z'1) G0°0 3
TBOX QUQ) (16°1) 60°0 (67°2) zro (FS'1) I1°0 (20°2) 600 L
(9L1-)  6L0-  TOATOITHINOW+EAd  (F8°T) 80°0 (zz'2) I1°0 (2L'1) I1°0 (1€°2) 010 9
(¢9¢-) @T1- OI'T+INON+Eedd (0v°2) I1°0 (0c°2) zro (L6°T) I1°0 (L£7) 60°0 G
(co'ge-)  L1°1- INOIWAHE4d (62°¢) ST°0 (0g¢) GT°0 (102) ero (z0¢) I1°0 i
(66c-) €11~ edd (c0°¢) GT°0 (61°¢) zro (62°2) P10 (zs°¢) €10 ¢
(0g¢)  ¥¥1- oBeIoAy (0g°2) I1°0 (2L'1) 80°0 (6L°1) 60°0 (6L2) 01°0 z
IO\ ouQ) (06°T) 60°0 (97°0) z0°0 (0z°0) 10°0 (¢8°T) L0°0 I

) 0 /! QOURLIRA 7 PIA Al 1 X149 - 4L ) [ -4l Ppouod

SOI[0J}10J SUI}I0G

UOTOIPaL] ST (1B

UOIIIPald UINIoY

sor[oj310d Angsnpuy O]

SOT[0J}I0J AI}sSnpu :Ssoulsnqoy :gI o[qrl,

46



(L8°0) 286  TOA+TDITHFINOW+EAL  (900) 000 (L£71) 600 (91°1) LT'0 (L80) 200
(ze'e-)  L90T- OIT+INOIW+€A4 (re0) coo (¢g1) o010 (211) L0 (¥60) 800
(c0'e-)  6€°6 INOIN+€d (cv0) €00 (€91) o010 (L&1) 610 (L0T) 600
(61¢)  Gv2- edd (LL0) <00 (802 110 (681) 020 (ST'T) 600
(16¢-)  81'8I- oeIoAY (¢60) 900 (1€2) 110 (#91) 120 (091) 110
TROX U (8z'1) 800 (L&2) ero (#81) g0 (681) <TI0
(96'1-)  180- TOATOITHWNOW+edd (62T) 800 (¢0c) 110 (621) 020 (06'T) @I'0
(P1°¢-)  eS'T- OI'TFINON+Edd (66:0) 00 (#¢1) 600 (z61) 00 (01T) €10
(Feer)  oF'T- INOIN+Ed (9vz) w10 (612 €10 (ze1) %10 (F8T) 110
(62¢)  veT- edd (ree) sro (g <o (921) 210 (92%) 910
(06¢-) 06T~ SCEREIN Y (toz) 1o (6600 200 (e51) ¢10 (gga) ¥10
[IUOTN dUQ) (to'r) 200 (900-) 000 (s¢1) €10 (322) 11°0

SO [1R], 103998 [RIOURUL]

(p.yuo)) sorjojpiod AIjsnpuj :sseujsnqoy

O — AN
L T e B |

47

—S AN M < O O I~ 0 O



"SIOLID PIRPUR)S JSOAN-AomaN SuIsn
pajeINOTRd aIR SOTISIYR]S-) [y -eanpadold sorjojriod Sur)ios oY) I10J symsel oy} jueseld g 0} ()] SUWN[O)) ‘SUOISSaIdal uorjorpaid
XId pue 3 9a1300dsar o) juesold g 01 g summnio)) ‘sojdwres (X I ‘F10¢) NX PUR AOIOPQT, ‘AS[SIS[[Og POYDIRUI JRI[} PUOIAS 1)
pue (3 ‘GI0g) Sueif pue A[[03 SoUDIRW JRY) oUO 1SIY oY) ‘sojdures o[qIssod om] I0J STINJOI Joy IR I0] SUOISSeIFol uoryorpald o1
yuesaxd G-z summnjo)) "sorojiIog AIISNpU] SUISN POJONLIJSUOD SINSBOUL YSLI [Ie) © I0J S)S9) SSOUISNOI PojIosse juasald o[qe)} ST,

(08°0) @9L  TOATOITHNOW+edd (280) #00 (¢91) 200 (160) 00 (FOT) %00
(162)  196G- OI'T+FINON+edd (6e1) <00 (¥6°1) 800 (88°0) 900 (90°T) ¥0°0
(c1z) 997~ INOIN+EAA (8z'1) <00 (981) 800 (0TT) 800 (g¥1) 900
(cL1-)  91%- cdd (¥6'1) 800 (61c) 110 (860) 200 (L¥1) 900
(yee-)  SUvI- oBeroAy (cge) 110 (SF2) 1o (¢P1) oro (1ee) 800
TBOX QUQ) (cse) ero (9gg) 1o (vee) gro (16@) 110
(612-)  060- TOATOITHFWOW+edd (60€) €10 (19e) €ro (ese) <10 (82 110
(66c)  T1€T- OI'THINOIN+Ed A (1ee) ¥10 (292 ¢€ro (Fre) 210 (0¥€) €10
(oge) 1CT- INOIN+€44 Frv) ozo (1¥e) Lro (Lze) <10 (19€¢) €10
(Lee)  91T- ¢ ()z¢) e€co (16€) 810 (62C) 910 (L1¥%) 910
(eLe)  LGT- oBeroAy (¢8¥) 610 (0627) €10 (09T) 110 (¥6€) ¥#10
[JUOTN duQ (09¢) ¢cro (seT) 900 (0eT) 800 (687€) 110

JSIY [1R], 103098 [eay

Gl
1T
0T

— N M < 10 O b~ ©

(p.yuo)) sorjojriod A1jsnpujy :sseujsnqoy

48



"SIOLIO PIRPURIS JSOAN -AOMON] SUISTL PIIRINOTRD OIR SOTISTIRYS- [y “oanpodord
sorjojarod SuIlIOS 9Y) I0J s)MSSI o] juesard g 03 (] SUWN[O)) SUOISsaIdal uonorpaid Y g pue p3 o9a1goadsar oy jueserd g 01 9 suwnjoy) -sojdures

(X119 ‘P10g) NX PUR ACIOPQT, ‘Ad[SIS[[Og PAYDIRUI JRl) PU0ISS oY) Pue (L3 ‘GT0g) Suel| pue A[[@3 SoUDJRW el auo )sIY oY) ‘sojdures a[qissod omj} 10]
SUINJOI JO3[IRUI I0] SUOISSRISaI UOTOIpald oY) yuesald G-z SUWN[O)) "9INSBOUI YSTY 1B oN[eA [BIINON SIY © I0] S350} SSUISnqod pajiosse juasaid o[qe} SIy T,

(€91) <081  TOA+OITHWNONW+edd (0z'1) 210 (98%) 910  (20°1) 8T°0 (05°0) ¢0°0 1
(cL0-)  €81- OIT+HINOIN+€4 (¢80) 910 (¢F2) ¥10 (80°1) 6T°0 (29°0) 90°0 I
(¢60-) orC INOIN+Edd (280) 10  (8LT1) o010  (86°0) ¢1°0 (6L°0) 200 01
(LL0-)  9Tc- edd (0L0) €10 (e81) 600  (06°0) er'0 (€L°0) L0°0 6
(Fee-)  L60T- dfeIoAy (290) 10  (F91) 800 (20T ¢T°0 (6L0) L0°0 8
TBOX QUQ) (¢L0) <10 (1¢1) 00 (61°71) eT°0 (01°1) 60°0 L
(er0) 900 TOA+DITHWNOW+eAL (L20)  ¥#10 (0g1) <00 (g2T) zr o (8T°1) 60°0 9
(€9 1-)  #8°0- OIT+INOIN+€A4 (78°0) <¢ro  (L60) F00  (0T°T) T1°0 (62°1) 60°0 G
(68'1-)  ¥8°0- INOIN+€dd (¢20) 110 (6600 €00 (69°0) 80°0 (92°1) 60°0 i
(96'1-)  98°0- edd (160) g0 (9200 @0 (¥20) €0°0 (80°T) 80°0 S
(8¢z-)  LTT- afeIoAy (690) ¢ro (9z0) 100 (LT°0°) 200~ (08°0) 90°0 z
YIUOIN duQ) (9¢'1) 220 (ze0) 100 (2107 10°0- (92°0) €00 I

7 0 7 XLd ) £ } X149 -4l 3 [ -9l poued

wOSOtLO& WQE.HOW QOEO%@@H& Mwwm Eﬁﬁ QOS&.@@MQ Q.H.Dpwﬁ

NSIY TIeL, YeA :SSouIsnqoy €T oEL,

49



Risk Neutral Probabilities
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Figure 1: This figure presents the implied risk neutral probabilities for a five asset econ-
omy and a variety of 7's.
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Discrepancy Bounds and Disaster Model
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Figure 3: This figure plots .
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Impulse Response Functions: Tail Risk Shock
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Figure 7: This figure presents the impulse response functions for Employment and Indus-
trial Production following a shock in the Hellinger Tail Risk. Results follow from a vector
auto-regressive approach similar to Bloom (2009) including an additional Tail Risk series
(still controlling for the market variance).

Impulse Response Functions: Volatility Shock
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Figure 8: This figure presents the impulse response functions for Employment and Indus-
trial Production following a shock in the market variance. Results follow from a vector
auto-regressive approach similar to Bloom (2009) including an additional Tail Risk series.
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Impulse Response Functions: Tail Risk Shock
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Figure 9: This figure presents the impulse response functions for Employment and Indus-
trial Production following a shock in the Hellinger Tail Risk. Results follow from a vector
auto-regressive approach similar to Bloom (2009) including an additional Tail Risk series
(still controlling for the big volatility events indicator).

Impulse Response Functions: Volatility Shock
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Figure 10: This figure presents the impulse response functions for Employment and
Industrial Production following a shock in the big volatility event indicator. Results follow

from a vector auto-regressive approach similar to Bloom (2009) including an additional
Tail Risk series.

o7



1130, rue Sherbrooke Quest, bureau 1400, Montréal (Québec) H3A 2M8

Tél.:514-985-4000 « Téléc.:514-985-4039

www.cirano.qc.ca * info@cirano.qc.ca

Centre interuniversitaire de recherche en analyse des organisations
Center for Interuniversity Research and Analysis on Organizations




	2016s-20_CouvertureCS
	2016s-20-page_titre
	2016s-20-article
	2016s-VersoCS



