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Résumé/Abstract 
 

The Lloyd’s 2007 Survey of Underwriters states that "for the third year running, managing the 

cycle emerged as the most important challenge for the industry, by some margin". The 

contention is of course that underwriting cycles exist in property and casualty insurance and 

are economically significant. Using a meta-analysis of published papers in the area of 

insurance economics, I show that the evidence in favor of underwriting cycles is misleading or 

even completely absent. There is in fact no statisical or economic support for the existence of 

underwriting cycles. This means that firm profitability in the property and casualty insurance 

industry is not cyclical; we only observe profitability going up or down with no meaningful 

pattern. It consequently follows that pricing in the property and casualty insurance industry is 

not incompatible with that of a competitive market. 
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Underwriting Apophenia and Cryptids: Are Cycles Statistical
Figments of our Imagination?

1 Introduction

Ever since Brocket and Witt (1982) showed that insurer profitability is well explained by an AR(2) process,

insurance academics, as well as practitioners,1 have presumed that profitability cycles exist2 in the property

and casualty insurance industry, but not in the life insurance industry. Winter (1991) states that "the

existence of cycles in insurance markets is a central topic of insurance literature" (p.117). One can read in

Lloyd’s 2007 Survey of Underwriters that "for the third year running, underwriters in the Lloyd’s market

have identified managing the cycle as the most important challenge for the industry".

These underwriting cycles appear to happen at regular intervals in many OECD countries if one was to

look at the plethora of available evidence (see Venezian, 1985, Cummins and Outreville, 1987, Lamm-Tennant

and Weiss, 1997, Chen et al., 1997, and Meier, 2006b, inter alia). These cycles are characterized by periods

of high profitability followed by periods of low profitability. The existence of a predictable underwriting

cycle has been seen as a sufficient condition for concluding that insurance markets are inefficient (see Gron,

2010, or Outreville, 1990), so that government intervention could be warranted (see Winter, 1991, for the

argument that government intervention would exacerbate cycles). Another reason why cycles can become

the catalyst for government intervention is that underwriting cycles have been associated in Trufin et al.

(2009) with higher ruin probability.

The thesis I defend in this paper is that the statistical evidence in favor of the existence of cycles is week,

and economically and statistically insignificant (see also Venezian, 2006). The reason is that the tests that

have been used in previous research on underwriting cycles were biased in favor of finding such cycles, so

that any inference and/or conclusion drawn from these tests are necessarily misleading. Once these biases

1 In Lloyd’s Annual Report 2006, one can read that "there is an increasingly complex underwriting cycle, where loss trends

and market forces are driving cycles with characteristics that differ by line of business and territory". In a McKinsey 2008

report, one can read that "reliance on the cycle and expectations of its implications for underwriting and profits are common

across the P&C insurance industry."See also Clark (2010), as cited in Wang et al. (2010)
2 In the first sentence of Doherty and Garven (1995, p.383) we can read that "It is widely believed that insurance markets

are cyclical"; Derien (2008, p.1) writes that "the presence of the underwriting cycle in non-life insurance is well established";

Wang et al. (2010, p.7) write that "the existence of the underwriting cycle is undeniable"; Lamm-Tennant et al. (1992, p.426)

talk about "the well-known cyclical pattern in loss ratios over time"; Chen et al. (1999, p.30) mention that the "existence of an

underwriting cycle has been recognized by researchers"; Harrington and Niehaus (2001, p.658) assert that "conventional wisdom

among many practitioners and other observers is that soft and hard markets occur in a regular cycle, commonly known as the

underwriting cycle"; Meier (2006a, p.65) contends that "there seems to be a wide consent in the insurance cycles literature ...

that the American insurance industry can be characterized by cycles of about six years in length"; a 2002 European Commission

study affirms that "in the non-life insurance market one of the major market drivers is the insurance cycle"; Fitzpatrick (2004,

p.257) writes that "there are, in fact, as many underwriting cycles as there are products in the property and casualty insurance

market", which is a rephrasing of Stewart’s (1984, p.305) "not every line of insurance experiences the same phase at the same

time". One can even read on Wikipedia (http://en.wikipedia.org/wiki/Insurance_cycle, consulted last on 13 July 2012) that

"the insurance cycle is a phenomenon that been recognised since at least the 1920s. Since then it has been considered an

insurance fact of life".
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have been corrected, significant underwriting cycles become the exception rather than the norm. As I will

show in this paper, we cannot scientifically dismiss the absence of cycles (i.e., we cannot reject H0), so that

scientific rigor demands that we cannot dismiss that insurer profitability is unpredictable and that it follows

a random walk. Consequently, Lloyd’s contention that we can "manage the cycle"3 is a waste of resources.

Although many sound theories have been developed to explain the existence of underwriting cycles in

the property and casualty insurance industry,4 I will conclude in this paper that insurance economists have

suffered from apophenia (that is, they have reported seeing meaningful patterns in random or meaningless

data).5 In that sense, insurance economists have been looking for a underwriting cryptid;6 that is, a phe-

nomenon that exists only in our collective (and overacting) imagination (see also Powers, 2012, who uses

the term "pareidolia"7 instead of "apophenia"). Sterman (1994) and McFadden (1999) call this search for

confirmation of current beliefs a quest for “emotional and spiritual sustenance”. Another bias, which is called

selective memory, occurs when favorable or unfavorable events that fit with an agent’s prior are remembered

more readily than events that do not fit.8 McFadden (1999) adds:

"Both selective memory and selective search cause individuals to be superstitious, perceiving

correlation between their own actions and outcomes of random events even when such correlation

is implausible. Superstition appears irrational, but may in fact be consistent with a complex non-

ergodic world view in which a Bayesian never accumulates sufficient objective data to rule out a

mental model in which Nature is conspiratorial and personal" (p.93).

My conclusion will not be that insurance prices and insurer profitability are not affected by external or

internal shocks; rather, it will be that there is no evidence that such shocks are anything else than random

unpredictable occurences. As I will show, any Brownian motion time series has a (high) probability of

resulting in a cycle as defined in the underwriting cycle litterature. The current paper offers a complement

to Boyer et al. (2012) who show that there is no in-sample or out-of-sample evidence that would support

the view that there is any type of predictability in annual insurance underwriting performance in the United

States. Put differently, no evidence exists that would allow one to conclude against the null hypothesis

of speculative efficiency. The results in the current paper suggest not only that cycles are on the whole

3http://www.lloyds.com/Lloyds/Press-Centre/Press-Releases/2006/12/Seven_steps_to_managing_the_cycle
4A non-exhaustive list includes the following contributions: Forecasting errors (Venezian, 1985, Boyer at al., 2011), delayed

feedback of prices to profits (Berger, 1988), insurer moral hazard (Harrington and Danzon, 1994. Fitzpatrick, 2004), arbitrage

theory (Cummins and Outreville, 1987), risky debt (Cummins and Danzon, 1997), interest rate variations (Fields and Venezian,

1989), and capacity constraints (Gron, 1994, Niehaus and Terry, 1993, and Winter, 1994).
5 See http://etyman.wordpress.com/2010/01/29/apophenia/ or http://en.wikipedia.org/wiki/Apophenia.
6Zombies, werewolves and leprechauns are famous cryptids. Other cryptids include: Bigfoot, Mapinguari, Sasquatch, Yowie,

Yeti, bunyip, chupacabra, fairies, the Loch Ness monster, mokele mbembe, mothman, unicorns, vampires, and p-zombies. See

The Skeptic Dictionnary (http://skepdic.com/ticrypto.html, last visited on 10 September 2012) or Carroll (2003).
7Defined in Powers (2012) as a phenomenon "in which a person belives that he or she sees systematic patterns in disordered

and possibly entirely random data" (p. 192).
8To paraphrase recent Bud light commercials: "it’s only stupid if it doesn’t work".
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unpredictable so that sophisticated underwriters should be unable to forecast future changes in industry

profitability, but also, and perhaps more importantly, that cycles may not even exist.

This short paper is organized as follows. Section 2 summarizes the classic property and casualty insurance

underwriting cycles papers that I will use in my meta-analysis. Section 3 presents the methodology I use to

analyse the likelihood that cycles will occur in any time series. The paper’s main results (i.e., the different

statistical tests) are also presented in Section 3. I conclude in Section 4.

2 Insurance cycles

Many theories have been proposed to explain the existence of underwriting cycles as defined in Brocket and

Witt (1982). Although it is not my goal to present all of them − the interested reader is invited to read
the excellent surveys of Harrington (2004), Meier and Outreville (2006) and Wang et al. (2010) − some are
more important as they either were the seed from which the entire cycle literature grew, or have kept the

topic alive. Cummins and Outreville (1987) propose that cycles were the result of external factors, such as

institutional and regulatory lags, as well as accounting practices. They contend that even though premiums

and profit margins are rationally set to reflect all available information, cycles could arise because of external

factors that vary across countries because of their different regulations and regulatory lags. In the same vein,

Venezian (1985) suggests that fluctuations in underwriting profit margins are caused by adaptive rate-making

methods. He states that the methods used by insurers to forecast future rates induce cycles. Consequently,

insurer profitability should be the combination of a predicable cyclical component and of random components

(see also Lamm-Tennant et al., 1992, Harrington and Yu, 2003, and Boyer et al., 2012).

Harrington and Danzon (1994) propose that cycles are partly caused by insurers that are betting for

ressucitation; an insurer with depleted assets − because of large losses, say − is tempted to sell its products
at too low a price in an attempt to improve its market share. This mispricing of insurance can also stem

from heterogeneous information (see also Fitzpatrick, 2004). Both cases induce insurers to cut their prices

to protect their market share. Harrington and Danzon (1994) find support for their hypothesis as forecast

revisions and prices are inversely related.9 Another asymmetric information approach is that of Cummins

and Danzon (1997) whereby the price of insurance is inversely related to the insurer’s default risk. As insurers

raise capital in response to adverse shocks, their loss ratio should be inversely related to their default risk,

which means that insurance premiums should be positively correlated to financial quality.10 Niehaus and

Terry (1993) observe cases of premiums being determined by past losses, and even stronger evidence that

they are determined by the industry’s past surplus. Their findings support the hypothesis that underwriting

cycles are partly the result of costly external capital. Citing Winter (1994), Cummins and Danzon (1997)

9See also Harrington (2004), Baker (2005) and Alkemper and Mango (2005).
10 See also Doherty and Kang (1988) and Doherty and Garven (1992).
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and Cummins and Doherty (2002), Cummins (2006) writes that the "consensus in the economics literature

is that hard and soft markets are driven by capital market and insurance market imperfections such that

capital does not flow freely into and out of the industry in response to unusual loss events" (p. 345).

Similar to Brocket and Witt (1982), Harrington and Niehaus (2000) find that insurance prices follow

a second order autoregressive process, and then focus on capital shock models to explain both hard and

soft market periods in the insurance industry. They suggest that premium variations are partly due to

variations in fundamentals. They also argue that there is evidence of another form of variation that cannot

be explained by efficient market theories. They attribute these variations to capital shocks. This follows

the capacity-constraint theory argument that underwriting cycles are the result of frictions caused by a

temporary incapacity of the industry to insure all risks (see in particular Gron, 1994a, 1994b, and Winter,

1994), or the impact of a major catastrophe (see Cummins, 2006, and Born and Viscusi, 2006) that depletes

part of the capital in the reinsurance market (see Berger et al., 1992, and Meier and Outreville, 2006).11 As

insured risks are not independent, premium nonlinearity are the result of the dependence between losses.

Because of this dependence conditional on the events occurring, and because raising external capital is more

costly than internal capital, market capacity is determined by the insurers’ net worth since it is necessary to

cover the contractual promise to pay claims.

None of these theories (and others I might have forgotten) about why underwriting cycles exist have

wondered if they actually exist.12 The presumption has been that underwriting cycles as define in Brocket

and Witt (1982) exist, and have existed since the early 1920s . The purpose of this paper is to question the

economic and statistical existence of underwriting cycles using the same evidence that has been presented

to support their apparent existence.

3 Source for the meta-analysis

The insurance industry goes through periods of high and low premiums relative to losses. The succession of

peaks and troughs has produced a large literature13 that attempts to explain why insurance markets cycle

through such periods of high and low profitability. The typical approach14 used to examine cycles in the

property and casualty insurance industry is based on standard econometric models (see Stock and Watson,

1988, Nelson and Plosser, 1982) that can be represented as:

Φ() = +   ∼ N(0 ) (1)

11More naive capacity constraint models were developped earlier by Stewart (1981,1984) and Wilson (1981).
12The only exception I found is Cummins and Outreville (1987, p.249) who write that "if cycles exist in insurance markets".
13The academic and professional literature generally agrees that there has been seven underwriting cycles in the United States

since 1950.
14An alternate approach is to use spectral analysis as in Venezian (2006) and Venezian and Leng (2006). But as highlighted

in Venezian (2006), spectral analysis is dominated by a standard AR(2) approach for the purpose of analyzing underwriting

cycles. See Chapter 6 in Hamilton (1994) for more on spectral analysis.
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where  is the profitability measure (underwriting ratio, loss ratio, combined ratio, or any other measure

of insurer profitability), and Φ() is a polynomial of degree  in the backshift operator  (see Boyer et

al., 2012, for more details) When   1, the characteristic equation may have pairs of complex roots, if the

corresponding determinant is negative. Then, for each such pair, of norm |||| and real part R(), there is
a cycle in the autocorrelation of , with period:

 =
2

arccos
³
R()
||||

´ = 2

arccos

µ
1

2
√
−2

¶ (2)

This suggests a maximum likelihood estimator of  based upon the maximum likelihood estimator of the

complex roots, which itself follows from the maximum likelihood estimators of Φ, the vector of autoregressive

parameters in equation 1. In particular, when we examine autoregressive models of the second order (i.e.,

AR(2) models), we will have two autoregressive parameters in equation 1. Let us call 1 the one-period lag

coefficient and 2 the two-period lag coefficient.

Assuming that we only take the positive root of
p−2 and that 1 ≥ 0, we know that  is bounded

below at 4. In other words, it is impossible to obtain a cycle that would be less than 4 since arccos (0) = 2,

so that 1=0 = 4.

3.1 Data collection

I collected the AR(2) coefficients from a set of papers that examine the existence of cycles in different

countries, in different periods, and in different property and casualty lines of business: Venezian (1985),

Cummins and Outreville (1987), Chen et al. (1997), Harrington and Niehaus (2000), Meier (2006a, 2006b)

and Meier and Outreville (2006). I also used my own calculations using data provided by A.M. Best’s

Aggregates & Averages for the United States (see also Wang et al., 2010) and by the Insurance Bureau

of Canada for Canada, as used in Trufin et al. (2009). As can be seen from Table 1 in the Appendix,

this exercise yields a total of 98 regressions that cover different periods, different countries and different

econometric specifications. There is also another set of 96 time series of insurer profitability that were

studied by Lamm-Tennant and Weiss (1997), for which none of the AR(2) coefficients are provided and

that will not be included in the final analysis . Table 2 presents the summary statistics associated with the

different15 samples and sub-samples examined.

It is important to note that there is no statistical difference (two-tail test at the 5% level) between the

average cycle lengths between the Lamm-Tennant and Weiss (LTW) sample (59 data points) and the sample

I am using (the 69 data points under column SE available ALL), especially if we remove the longest cycle

(28 years) that was obtained after performing a regression without a trend component using U.S. data from

15The criterion used for the different subsamples is described later in the paper.
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1969-2004.16 A non-parametric Kolmogorov-Smirnov test on the two samples tells us, however, that the

two distributions of cycle lengths are not equal and not normally or log-normally distributed, thus biasing

the student equality test used on the means of the two samples. I will not include in my final analysis the

96 regression results of Lamm-Tennant and Weiss (1997) because the authors did not report the standard

errors or the t-statistics of their AR(2) estimates.17

Table 2. Summary statistics of cycles in the different samples and subsamples

SE available

Combo ALL Signif. Bonf. Stud. LTW Random Trunc.

Total Observations 194 98 98 98 98 96 700*200 140,000

Number of cycles 128 69 30 21 11 59 91000

Probability of a cycle 66% 70% 31% 22% 11% 61% 66% (3%) 65%

Mean cycle length (or period) 7.62 8.11 7.03 6.89 6.08 7.05 8.6 (12) 7.50

Median cycle length 6.90 7.70 6.95 6.51 6.11 6.15 6.0 (03) 5.95

St.Dev. of cycle length 3.37 3.51 1.31 1.32 0.57 3.12 9.8 (9) 4.25

Skewness of cycle length 3.08 3.33 0.43 0.89 0.94 2.89 5 (22) 2.3

Kurtosis of cycle length 13.83 16.44 -0.66 0.28 1.24 10.54 35 (30) 6.1

Longest cycle 28.40 28.40 9.92 9.92 7.35 21.97 10,000 30

Shortest cycle 4.09 4.36 5.17 5.24 5.39 4.09 4 4

Gaussian (JB-test)18 Reject Reject Don’t Don’t Don’t Reject Reject Reject

Gaussian (KS-test)19 Reject Reject Don’t Don’t Don’t Reject

Gaussian (SW-test)20 Don’t Don’t Don’t

LTW refers to the results from Lamm-Tennant and Weiss (1997).

SE available refers to those studies where the standard errors of the two AR(2) regression coefficients are available.

ALL uses all the data points; Signif uses all data points where the two coefficients are significantly different from

zero; Bonf uses the data points where the two coefficients pass the Bonferroni test, and Stud uses the data points

where the two coefficients pass the Student test. Combo combines the 98 observations where standard errors are

available with the 96 observations presented in Lamm-Tennant and Weiss (1997).

Random and Trunc refer to the case where 1 and 2 were each randomly drawn from a uniform distribution.

The values under the Random column are the average values for each statistical moment using 700 series of 200

draws with the standard deviation in parentheses. The values under the Trunc column were obtain using 140,000

draws, but limiting the maximum cycle length to 30 years.

16 I also analyzed the 1874-1901 U.S. fire insurance experience reported in Baranoff (2003), the 1874-1906 fire insurance

industry loss ratio reported in Zanjani (2004), the recent data from 1992 until 2011 reported in Hartwig (2011) for P&C

commercial lines, homeowner and workers’ compensation, and South African marine insurance data from Tarr (2008). Because

these are not traditionnal papers cited in the literature, I will not use them in the overall analysis, but their inclusion would

not change the conclusion of the paper. For the record, the data in Baranoff (2003) and Zanjani (2004) do not yield cycles as

defined in Brocket and Witt (1982) since both 1 and 2 parameters are positive, and only one of the three time series data in

Hartwig (2011) yields such a cycle. Finally, I found only one cycle out of the the two time series of Tarr (2008).
17 I contacted Mary Weiss who could not find the raw data they used for that paper.
18The Jarque-Bera test (see Jarque and Bera, 1980) examines whether the observation are distributed normally based on the

observed skewness and kurtosis. The JB statistic is given by  = 
6


2 +

(−3)2
4


, with  being the number of observations

and  and  being the third and fourth moment of the empirical distribution (not the kurtosis which is the fourth central

moment from which we substract
3(−1)2

(−2)(−3) ). The JB statistic follows a 2 distribution with two degrees of freedom.
19The Kolmogorov-Smirnov test of normality is valid only for a number of observations between 10 and 1024. We

present the 5% test here so that we cannot reject the normality distribution assumption with a 95% confidence interval.

http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html
20The Shapiro-Wilk test of normality is valid only for a small number of observations (between 5 and 38). We present the

5% test here so that we cannot reject the normality distribution assumption with a 95% confidence interval. See Shapiro and
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Using the Jarque-Bera statistical test or running the non-parametric Kolmogorov-Smirnov normality test,

I am able to reject that the period of cycles is distributed normally for the three largest samples (under the

column headings Combo, ALL, LTW ). For the three smaller samples (Signif, Bonf and Stud), the Jarque-

Bera test, the Kolmogorov-Smirnov test, and even the small sample Shapiro-Wilk test tell us that we cannot

reject the normality distribution assumption at the 95% level of confidence.

Figure 1 presents the point estimates of the 98 1 and 2 regression results for which I have the standard

error of the AR(2) regression and that are displayed in Table 1 in the Appendix.21

‐1,0

‐0,8

‐0,6

‐0,4

‐0,2

0,0

0,2

0,4

0,6

0,8

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

Figure 1: AR(2) regression coefficients for each time series; one-lag parameter value (1) on the horizontal

axis and two-lag parameter value (2) on the vertical axis.

The last two columns of Table 2 present the average statistics associated with cycle lengths when I

draw randomly 1 and 2 from uniform distributions over the acceptable domains of each parameter (i.e.,

1 ∈ [0 2] and 2 ∈ [−1 0]). The Random column displays the average cycle length statistics (and standard

deviation) when 700 series of 200 random draws of 1 and 2 are used. Using the same 140,000 random

draws of 1 and 2, the last column (Trunc) concentrates on the basic statistics obtained when I limit the

longest cycle to be 30 years (the maximum cycle length that is observed in the first six columns). It is

interesting to note the similarities between the basic statistics (mean, median, standard deviation, skewness

and kurtosis) of the cycle lengths of the first column (Combo) and the last two columns (Random and Trunc).

Wilk (1965) for more details.
21Figure A in the appendix highlights the source of some of those points by seperating results that are problematic for the

theory of cycles in P&C insurance, from results that are less problematic. Many of the classical results are clustered.
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For instance, the mean of the cycle period under the column Combo is not statistically different from the

cycle period mean under the column Trunc.

3.2 Statistical tests and methodology

The hypothesis I test with the set of results that was published in the academic literature is the following:

• H0: Insurance profitability cycles do not exist

• H1: Insurance profitability cycles exist

Of the 98 regression results under column All of Table 1, only 69 are such that we can actually calculate

a cycle period. Figure 2 illustrates how many of the 98 regression results displayed above yield a cycle. The

square data points represents regression results for which a cycle cannot be computed. The observations

represented by diamond-shaped points22 are such that the 1 and 2 values allow the calculation of an

underwriting cycle period.

Figure 2: AR(2) regression coefficients for each time series; one-lag parameter value (1) on the horizontal

axis and two-lag parameter value (2) on the vertical axis. Cycle period cannot be computed for the

observations reported as squares.

If I am to add the 59 instances of cycles presented in Lamm-Tennant and Weiss (1997) out of the 96

regressions they conducted (12 countries, 8 lines of business), the proportion of instances where a cycle is

presumably observed is 128/194=66%, as can be seen under the column Combo in Table 1. How significant

is the 66% likelihood of observing a cycle?

22Excluding the data points from Lamm-Tennant and Weiss (1997) for which the first and second lag coefficient values are

not reported, the square data points represent 70% of the total number of observations.
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Suppose we have no knowledge whatsoever about the values of 1 and 2 other than imposing stationarity

on the AR(2) process. Suppose also that we draw randomly from a uniform distribution values for 1 and

2. Given a random uniform distribution of 1 and 2, the probability of observing a cycle can easily be

shown by analytical integration to be 66%. As shown in Figure 3, this probability of observing a cycle is

equal to the area below the parabola 21 + 42  0 and above the base of the base of the triangle set at

2 = −1 where the AR(2) has two complex roots (see Zellner, 1971, and Sargent, 1986). I am now able to

rewrite the hypothesis that I test in terms of the 1 and 2 parameters:

• H0: 2 ≤ −21
4
and 1 ≥ 0

• H1: 2  −21
4
or 1  0

Figure 3: AR(2) regression coefficients for each time series; one-lag parameter value (1) on the horizontal

axis and two-lag parameter value (2) on the vertical axis. Cycle period cannot be computed for the

square data points because they lie above the parabola. The straight line represents the upper limit of the

stationarity triangle.

Drawing randomly 1 and 2 from a uniform distribution would give us a pair of parameter values such

that a cycle "exists" with probability 66%. Even if I let 2 take potential positive values, but that all 1

and 2 couples remain within the stationarity triangle admissible in an AR(2) process (the dark straight line

with slope −1 in Figure 3), the area under the parabola represents 2/3 of the entire area of the stationarity
triangle. Consequently, the likelihood that one has found a cycle in any time series of insurance profitability

is not very different from the probability that a spurious cycle is found in a pure random distribution of the

two lagged parameters.
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Also worth mentioning is that not all regression results presented in Table 1 have regression coefficients

that are significant. In fact, of the 98 regression results under study, only 30 actually have the 1 and 2

coefficients that are both significantly different from 0.23 In other words, more than half of the regressions

where a cycle has been presume to exist are subject to important errors in variable problems. Another

interesting observation is that the real test one should conduct is not for the 1 and 2 coefficients to

be different from zero, but to be different from the parabola that delimits the existence or not of a cycle.

Surprisingly, no one in the literature has conducted a joint significance test on the two parameters of interest.

Using a Bonferroni test or a Student test reduces even more the likelihood that a cycle is observed. The

Bonferroni test is a simple conservative joint estimation test whereby if there are two parameters of interest in

a regression, then the Bonferroni p-value of the joint test is equal to twice the highest p-value. For example, if

the two coefficients have individually p-values of 1% and 3%, the combined p-value is 2×max [1% 3%] = 6%.
The Student test is computed as (1 + 42) 

q
(1)

2
+ (42)

2
, where I assumed that the covariance between

the 1 and 2 estimates is zero. It is important to note that neither test is precise: The Bonferroni test by

design, and the Student test by absence of data since I do not have any of the covariances between the two

AR(2) estimates.

Figure 4 highlights the correspondence of parameter values between observations that do not have the

two parameters that are statistically different from zero (Insignificant), the 30 observations (Significant)

whereby the two are statistically different from zero but do not pass the Bonferroni test, the 21 observations

(Bonferroni) whereby the parameters pass the Bonferroni test but not the Student test, and finally the 11

observations (Student) that pass all tests, including the most stringent Student test.24

If I only focus on the observations that pass the Bonferroni test, there are merely 21 observations whereby

it would be reasonable to believe that a cycle exists out of the 98 observations I started with. This represents

a success ratio of 22%. These 21 observations allow me to calculate an average cycle period of 6.9 years

(median of 6.5 years) and a standard deviation of 1.3 years. The average cycle period is smaller than the

mean of the randomly obtained cycle periods calculated using an independent and uniform distribution of

1 and 2 (which was 7.5 when we concentrate on cycles of less than 30 years in Table 2).

Using the Student test as the appropriate statistic, only 11% of the data points display coefficient values

that are consistent with a cycle. The mean (and media) cycle period then becomes 6.0 years with a very

small standard deviation of 0.6 years. Interestingly, 6.0 is the median of both cycle period for the Random

sample in Table 2 and the sample that passes the Student test statistic.

23Of the 19 observations where 2 is positive, only 2 are statistically so. In neither case is the corresponding 1 coefficient

statistically different from zero.
24 Incidently, only 6 out of the 20 observations in Cummins and Outreville (1987) pass the Bonferroni test, 8 out of 12 in

Venezian (1985), 2 out of 25 in Chen et alii (1997) and 3 out of 6 in Harrington and Niehaus (2001). None of the observations

in Meier (2006a, 2006b) pass the Bonferroni test.
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Figure 4: AR(2) regression coefficients for each time series; one-lag parameter value (1) on the horizontal

axis and two-lag parameter value (2) on the vertical axis. Different levels of test significance are reported

using different symbols. Insignificant means that either 1 or 2 is not significantly different from zero. The

other three measures are taken with respect to the parabola parameter values that determine whether a

cycle period can be computed: Significant means that 1 and 2 are significantly different from zero but

not different from the parabola, whereas Bonferroni and Student means that 1 and 2 pass the eponymous

tests (the Student test being more stringent than the Bonferroni test).

3.3 Are Underwriting Cycles Really Cryptids? A Counter Point

In the minds of insurance professionals and insurance economists, the existence of underwriting cycles is well

established. To paraphrase Winston Churchill: How can so many have so much belief in such few evidence?

Powers (2012) writes:

"It is particularly ironic that over a period of several decades researchers pursued causal expla-

nations of the cyclical nature of insurance company profitability without first having carried out

a formal test of this pattern... the preconception of a fundamental sinusoidal relationship was so

strong among scholars that they felt it unnecessary to test the simple functional relationship be-

tween profitability and time before embarking on more extensive - and unavoidably inconclusive

- investigations" (p. 199).

One possibility is that past researchers and industry professionals are right and that cycles exist, but they

just have not been measured or recorded properly. Perhaps the statistical tests I use are not constructed

properly.
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3.3.1 Statistical test

The statistical tests I present examine whether there is evidence that could reject the absence of cycles.

In other words, the H0 in this paper is that underwriting profits are generated using a random walk. An

alternate hypothesis would be to posit H0 as "cycles exist" and to see if we can reject the existence of cycles.

One way to conduct such a test is to see whether is it more likely that we are sure that a cycle exists

(statistically inside the parabola) compared to being sure that a cycle does not exist (statistically outside the

parabola). To do so, let’s construct three regions; the first that has the draws for which we are reasonably

sure that a cycle exists, the second that has the draws for which we are reasonably sure that a cycle does

not exist, and the third where we are not sure.

To conduct such an analysis, we need to find a confidence interval around the parabola in order to assign

the different draws in the three bins. How should we calculate the confidence interval?

One way is calculate the confidence interval using the available evidence in terms of the standard errors

of the different 1 and 2 estimators. For each of the  = 1  98 draws from the literature, I construct

the statistic  =

q¡
1

¢2
+
¡
2

¢2
that acts as a proxy for the global standard error of each draw.

I then take the average over the 98 standard errors  () =
P98

=1
1
98

q¡
1

¢2
+
¡
2

¢2
, which in the

case of the sample under study is equal to  () = 03.
25 I then impose a steepening or a flattening of the

parabola of twice the expected standard error. This gives us three regions into which 1 and 2 draws can

randomly fall: below the lower bound where a cycle is likely to exist, above the upper bound where a cycle is

not likely to exist, and between the two bounds where the existence remains unknown. Figure 5 illustrates

the exercise using the same graph as before.

Counting the number of draws that lie below the lower bound, we find 21 points such that a cycle is likely

to exist in a region that covers approximately 35% of the admissible graph. Conversely, there are 20 draws

that lie above the upper bound, so that a cycle is not likely to exist in a region that covers approximately

25% of the admissible graph. This suggests a 50/50 chance that cycles exist. This is not a very high level of

confidence given the economic and academic research.

Doing the same exercise by applying a translation of two average standard errors to the vertical value,

the number of draws that are cycles drops to 3 (in an admissible area of 12%) and the number of non-cycles

to 1 (in an admissible area of 4%). Given the low number of draws that clearly lie in the no cycle or in the

cycle regions, it would be improper to draw any conclusion except to say that the existence of cycles is not

without doubt.

25 Interestingly, the average standard deviation of 1 is almost exacly equal to the average standard deviation of 2: 

1


=

0206 and 

2


= 0207. This is expected to occur if 1 and 2 are drawn randomly from the same distribution.
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Figure 5: AR(2) regression coefficients for each time series; one-lag parameter value (1) on the horizontal

axis and two-lag parameter value (2) on the vertical axis. The existence or not of a computable cycle is

determined by the position of the points with respect to the parabola. The Upper and Lower curves represent

a 95% confidence interval as equal to twice the average standard error of the 1 and 2 estimators. The

straight line represents the upper limit of the stationarity triangle.

3.3.2 Admissible area

Another possibility is that the test I am conducting is not specified correctly because I am examining only

one quarter of the entire possible graph when arguing that the unconditional probability of finding a cycle

is 66% over the admissible region. Technically, AR(2) regression results can yield values that do not lie in

the area I have examined so far (a draw in the region delimited by 1 ∈ [−2 0] and 2 ∈ [0 1] is technically
possible). Looking at Figure 6,26 we see that a cycle will exist provided that draws are under the parabola,

whereas the AR(2) model is stationary if the draws fall within the triangle with summits (0,1), (-2,-1) and

(2,-1) in the 1, 2 space.

Assuming we are only looking at the draws that yield a cycle over the entire region 1 ∈ [−2 2] and
2 ∈ [−1 1], the probability of falling in the region below the parabola with 1  0 is 1/6, or 17%. Assuming
we only concentrate on draws where 1  0 − as the insurance economic literature has done − the odds of
finding a cycle are 1/3. This is still quite high given the actual evidence in the data where less than one third

of the regressor pairs have both b1 and b2 estimators significantly different from zero using a Bonferroni or

a Student test.

26 I am grateful to Richard Peter for providing me with this figure.
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Figure 6: Stationarity triangle and cycle parabola in an AR(2) regression.

4 Conclusion

"There is a universal tendency among mankind to conceive all beings like themselves, and to

transfer to every object those qualities with which they are familiarly acquainted, and of which

they are intimately conscious. We find human faces in the moon, armies in the clouds; and by

a natural propensity, if not corrected by experience and reflection, ascribe malice and good will

to everything that hurts or pleases us." David Hume (Natural History of Religion, Section 3,

1757).27

The purpose of this short article was to offer a challenge to the popular view that the property and casualty

insurance industry is characterized by profitability cycles akin to real business cycles in the economy. Using

a meta-analysis of the, arguably, most influential papers in the field that span different lines of insurance,

different countries, different samples and different AR(2) specifications, the results of the paper show that the

existence of underwriting cycles is far from obvious. When a proper statistical test on the AR(2) regression

parameter values is conducted (a Bonferroni test to be exact, or a more stringent Student test), I find that

a cycles is likely observed in less than a quarter of the studies on the topic. This is far from the 65% to 70%

likelihood that is generally presented in the literature. And even this generally reported probability range is

close to the probability of finding a cycle by drawing randomly the two AR(2) parameters from a uniform

distribution.

27Source: http://etyman.wordpress.com/2010/01/29/apophenia/ (last visited on 29 october 2012)
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Of course, the analysis I present is based on results that have already been published in the literature,

without verifying directly the validity of these regression results. Also, I did not use all the results that

could have been found in the insurance economic literature; I only used what appeared to me to be the

most influential results and those that provided estimates of the standard errors of the AR(2) regression

parameters.

Where does that take us in terms of research on the topic of underwriting cycles? To paraphrase the

character of Ebby Calvin "Nuke" LaLoosh in the movie Bull Durham: "Sometimes profits go up; sometimes

profits go down; and sometimes it rains".

To be honest, it is still possible that insurance profitability cycles exist in some lines, countries and for

some time period. As a whole, however, the evidence is just not there statistically and scientifically (see

also Venezian, 2010, and Powers, 2012). And even if there are instances where the absence of a cycle can be

rejected, there is no evidence whatsoever that the gradient of the cycle would be predictable (see Boyer et

al., 2012, for more on this topic). This means that insurers that "have simply accepted the insurance cycle,

seeing it as a force of nature with an uncontrollable impact on their business"28 might have been doing the

right thing... inasmuch as cycles in equity index prices29 are a force of nature that have an uncontrollable

impact on the design of a pension plan.

The human tendency of trying to find pattern in randomness may explain why insurance economists

have been trying to find explanation for the apparent cyclicality of insurer profitability. This human bias is

normal, and has led many economists to develop what is now known as behavioral theories of economic life.

McFadden (1999) writes

"Tune (1964) and Kahneman and Tversky (1972) document experimentally that individuals

intuitively reject randomness when they see recognizable patterns or streaks, systematically un-

derestimating the probability that these can occur by chance. These biases reinforce the influence

of random coincidences on beliefs and behavior" (p.93).

Even though such a bias may be normal, it should not represent the basis of scientific analysis. The

belief that underwriting cycles exist leads to the perception that the insurance market is plagued with

imperfections. As such, the presence of underwriting cycles can become the basis of government intervention

(see Gron, 2010), or can be part of a financial stability regulation to control insolvency (see Trufin et al.,

2009, and European Commission, 2002) even though Winter (1991) shows that solvency regulation may

actually exacerbate cycles. Perhaps we would be wise to heed the conclusion of Baker (2005) who argues

28http://www.lloyds.com/Lloyds/Press-Centre/Press-Releases/2006/12/Seven_steps_to_managing_the_cycle
29Using monthly data, we can calculate a cycle period of 4.69 months for total returns on the SNP500 from April 1993 until

June 2012 (or 7.22 years when using yearly total return over the same period), a cycle of 4.15 months for the total returns on

the FTSE100 from July 1984 until June 2012, and a cycle of 4.16 months for the total return on the 30 year treasury bond

from May 1977 until June 2012.
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that "leaving the insurance cycle alone would be the wiser course for now".

As I show in this paper, there is really no scientific (or statistical) basis to support the perception that

there are profitability cycles in the property and casualty insurance industry; it is simply not there! We

can therefore affirm that there is no market-wide evidence that insurance companies are behaving non-

competitively; or at least, there is no evidence that insurer profitability is not as random as what one would

expect to see in a competitive market open to new entrants.
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6 Appendix

‐1,000

‐0,800

‐0,600

‐0,400

‐0,200

0,000

0,200

0,400

0,600

0,800

0,000 0,200 0,400 0,600 0,800 1,000 1,200 1,400 1,600 1,800 2,000

Problematic Less Problematic

Cummins & 
Outreville

Venezian

Chen

Harrington & 
Niehaus

Figure 7: AR(2) regression coefficients for each time series; one-lag parameter value (1) on the horizontal

axis and two-lag parameter value (2) on the vertical axis. Some datapoint sources (3 of 25 from Chen et al.,

1997, 6 of 20 from Cummins and Outreville, 1987, 8 of 12 from Venezian, 1985, and 3 of 6 from Harrington

and Niehaus, 2000) are indicative of some level of clustering of the 1 and 2 regression results.
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