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Abstract 
 

Many non- and semi- parametric estimators have asymptotic properties that have been 

established under conditions that exclude the possibility of singular parts in the distribution. It 

is thus important to be able to test for absence of singularities. Methods of testing that focus 

on specific singularities do exist, but there are few generally applicable approaches. A general 

test based on kernel density estimation was proposed by Frigyesi and Hössjer (1998), but this 

statistic can diverge for some absolutely continuous distributions. Here we use a result in 

Zinde-Walsh (2008) to characterize distributions with varying degrees of smoothness, via 

functionals that reveal the behavior of the bias of the kernel density estimator. The statistics 

proposed here have well defined asymptotic distributions that are asymptotically pivotal in 

some class of distributions (e.g. for continuous density) and diverge for distributions in an 

alternative class, at a rate that can be explicitly evaluated and controlled. 
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1 Introduction

Many non- or semi-parametric estimators use nonparametric kernel estima-
tors of density. The literature on the kernel estimator of density itself, as
well as on many other estimators into which the kernel estimator enters in
some form or another, typically assumes continuity of the underlying density
function and thus excludes the possibility of singular parts in the distribu-
tion; often more stringent smoothness assumptions are made.

There are many situations in which it is useful to know whether the
distribution has singularities or is sufficiently smooth; smoothness of the
distribution is required to establish convergence rates for many widely used
semi- and nonparametric statistics such as density estimators, various esti-
mators of conditional mean and their derivatives. 2 Insufficient smoothness
or singularities may lead to non-standard convergence rates. Testing meth-
ods have typically focused on specific singularities, following Müller (1992),
but there are few generally applicable approaches. A general test of singu-
larity based on the kernel density estimator was proposed by Frigyesi and
Hössjer (1998) (hereafter ‘FH’); however, that test is not well suited for
verifying the validity of assumptions in nonparametric estimation.

If there is singularity an ordinary density function cannot be defined.
However, as discussed in Zinde-Walsh (2008) (hereafter ‘VZW’), density can
always be defined as a generalized function, specifically as the generalized
derivative, f, of the distribution function, F, which is an ordinary function.3

Consider a space Dl of “test functions”,ψ, that are l times continuously
differentiable and have bounded supports. Then a generalized function is
defined as a linear continuous functional on Dl and belongs to the space de-
noted D′l. For example, a generalized density function f defines a functional
on the space of continuously differentiable functions, D1 as a generalized
derivative of the corresponding distribution function, F. For any ψ ∈ D1

define the value of the functional (f, ψ) as

(f, ψ) = −
∫
F (x)ψ′(x)dx.

2Generally a distribution function can be represented as a mixture of absolutely con-
tinuous, discrete and singular components. The known discrete part of the distribution
should be treated separately both for estimation and testing (as discussed in e.g. Li and
Racine, 2007); the approach here deals with the distribution over a continuum domain and
from now on we do not consider discrete components. Of course, it is possible that the
discrete part is mistakenly treated as continuous in kernel estimation (e.g., Zinde-Walsh,
2008, Example 3); in such a case the discussion in this paper also applies.

3See e.g. VZW, Appendix B, for the definitions of a generalized function and related
concepts.
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Depending on the context it may be useful to think of a generalized
function as an element in one of a variety of spaces, D, where differentia-
bility of the test function substitutes for lack of required smoothness in the
distribution function. For example, if the interest is in the density itself we
may view it as a functional on the space of continuously differentiable func-
tions, D1. If the density function exists and is continuous it can represent
a functional on the space D0 of continuous functions: for ψ ∈ D0 the value
(f, ψ) is equal to

∫
f(x)ψ(x)dx.

In VZW asymptotic results for the kernel estimator of density were ob-
tained under general conditions that did not require existence of density;
in this general setup the asymptotic process for the kernel estimator was
described as a generalized Gaussian process in the sense of Gel’fand and
Vilenkin (1964). Here we explore the relation between the properties of
the density and the corresponding rate of convergence on the space Dl. In
the class of distributions that possess a continuous density one can select a
bandwidth h(l) and kernel K of order no less than l, such that the kernel

density estimator f̂(l) based on h(l) and K converges on the space Dl; the
rate of convergence of the (generalized) bias functional determines the con-

vergence rate for f̂(l) . From VZW the limit distribution is Gaussian, and
so for an appropriate bandwidth a statistic that has the standard normal
as its asymptotic distribution can be constructed. In the case of singularity
there will exist ψ ∈ D0 such that the estimator diverges as a result of the
behavior of the asymptotic bias functional. The statistic then diverges and
the divergence rate can be established. Of course due to the nonparametric
nature of the estimator the rates are non-parametric and divergence may be
slow.

The performance of the test will depend on the function ψ. We pro-
pose such a function constructed based on the distribution itself, to magnify
the possible violations of properties of continuity and smoothness, and in
this our test bears a similarity to that of FH; however, our test has estab-
lished asymptotic distributional properties in a class of interest and a known
asymptotic rate of divergence for an alternative class. The statistic uses the
discrepancy between a kernel density estimator and the density (generalized
derivative of the distribution function) weighted by the weighting function
ψ. The statistic behaves differently in the classes where density exists rela-
tive to cases in which the distribution is singular. A feasible version of the
statistic is shown to have the same asymptotic properties as the infeasible
statistic.

In section two the new statistic is proposed and its asymptotic properties
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established. In section three the properties of the test (asymptotic size and
power and uniform control of power over some non-parametric subclasses
of distributions) are established; results of a Monte Carlo experiment show
reasonable conformity with the asymptotic properties.

2 The test statistic and its properties

We need to distinguish several classes of distribution functions. Consider
the following classes, H. :

Ho : F (x) is absolutely continuous; density exists;
Hc ⊂ Ho : the density f(x) is a continuous function;
Hs : F (x) is not absolutely continuous and has singularity points (where

density does not exist as an ordinary locally summable function).
Hs(U) ⊂ Hs : the set of singularities of F (x) has a non-empty intersec-

tion with an open bounded set (interval) U ⊂ R.

Many of the assumptions in the nonparametric literature place the den-
sity in one or another of these classes, and our aim is to test such assump-
tions. However it is known that in a fully nonparametric context, even
for some parametric hypotheses, no valid tests exist (Bahadur and Savage,
1956); Lalley and Nobel (2003) showed that there is no consistent test that
can distinguish the Ho from the Hs class. This problem stems from the fact
that near any distribution of interest (e.g. from Ho) there are distributions
that are empirically (at any given sample size, for any decision rule) indis-
tinguishable from Hs. Nonetheless, although we cannot distinguish between
Ho and Hs, we may be able to distinguish some subclasses. Note as well
that in practice we have a limited degree of precision in data, say up to k
decimal points; for every sample size, n, of observations from a (possibly
absolutely continuous) distribution there is therefore a limit to the nature
of the deviation from continuity which we can detect.

Frigyesi and Hössjer (1998) proposed a test that would distinguish a
subclass of Ho from Hs; they constructed a functional

∫
H(f(x))dx such

that for the kernel density estimator, f̂ , the functional
∫
H(f̂(x))dx diverges

for distributions in Hs; the subclass of Ho that can be then isolated is such
that the value of the functional

∫
H(f(x))dx is bounded by a constant, C.

However, having the test statistic itself define the null class means that to
establish absolute continuity of a distribution, different statistics need to
be constructed. The statistic proposed here is applicable to any absolutely
continuous distribution.
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2.1 Weighting function

We first introduce a weighting function with order of differentiability that
is controlled by the properties of the distribution. If f(x) is continuous,
F (x) is continuously differentiable and its integral, IF (x) =

∫ x
−∞ F (w)dw,

is twice continuously differentiable; if f(x) exists but is not continuous
F (x) can be at most continuous but not continuously differentiable, while
IF (x) =

∫ x
−∞ F (w)dw, is at most once but not twice continuously differ-

entiable; IF (x) for a singular distribution is at least Lipschitz continuous
with

|IF (x+ ∆)− IF (x)| < |∆| ;

IF (x) grows at infinity no faster than linearly in |x|.
We construct the weight function ψIF (which we now subscript to in-

dicate the dependence on the integral of the CDF) to inherit the non-
differentiability properties of IF and to dampen its growth at infinity. For
some (either bounded or unbounded) open set U ∈ R, denote by Ω the set
(supp F ) ∩ U, and by Ω̄ the closure of this set.

Assumption 1 (weighting function).

(a) The weighting function is ψIF (x) ≡ IF (x)φ(x), where φ(x) > 0 on
Ω; φ(x) is at least twice continuously differentiable on Ω̄; φ(x) is bounded
on Ω̄;

∫
x4φ(x)dx <∞.

(b) Eψ2
IF > χ > 0; EψIF > A > 0.

For example, if Ω = (a, b), an open bounded interval, φ(x) could be

defined as

[
1−

(
2x−a−b
b−a

)2
]2

for x ∈ (a, b), 0 otherwise. For a bounded Ω

and a given φ there is a uniform upper bound on ψIF . Alternatively for
Ω = R, φ(x) could be φN (x), the standard normal density function; since
IF (x) = O(|x|) as x→∞ it follows that ψIF (x) is bounded in that case as
well.

The condition (b) is satisfied if for some set B we have µF (B) > π and
inf
B
φ > π, for some π > 0, where µF (B) > π denotes the measure associated

with the distribution F.

2.2 The infeasible statistic

The next subsections give the standard kernel density estimator used in the
statistics and then introduce the infeasible statistic and examine its limit
properties.
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2.2.1 Density estimator

The kernel estimator of density uses a kernel that satisfies standard assump-
tions.

Assumption 2 (kernel).

(a). K(w) is an ordinary bounded function on R;
∫
K(w)dw = 1;

(b). The support of K(w) belongs to [−1, 1];
(c). K(w) is an l − th order kernel: the integral∫

wvK(w)dw

{
= 0 if v < l;

6= 0, <∞ if v = l.

(d) K(w) is continuously differentiable.

Typically a second-order kernel, l = 2, is considered: a (bounded) exam-
ple is the Epanechnikov kernel. Alternatively, the finite support assumption
that somewhat simplifies the derivation here could be relaxed and a Gaus-
sian kernel could then be used.

Define the kernel density estimator

f̂(x) =
1

nh
Σn
i=1K(

xi − x
h

)

and denote the expectation of f̂(x), given the kernel function and bandwidth,
by E(f̂).

2.2.2 The infeasible statistic and its limit properties

The generalized derivative of the distribution function will be denoted by
f(x) (even though it may not be defined point-wise); it appears only in
integrals where it is multiplied by a function with a summable derivative,
such as ψIF (x).

Define the infeasible statistic:

z =
(nh)

1
2
∫ (

f̂(x)− f(x)
)
ψIF (x)dx

(σ2
n)

1
2

; (1)

σ2
n ≡ var

[
(nh)

1
2

∫ (
f̂(x)− f(x)

)
ψIF (x)dx

]
.
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Note that
∫
f(x)ψIF (x)dx is not random, so that σ2

n can be simplified

to var
[
(nh)

1
2
∫
f̂(x)ψIF (x)dx

]
.

Then we can decompose the statistic (recalling that fhK = Ef̂) as:

z = (nh)
1
2 [z1 + z2]; with

z1 =

∫ (
f̂(x)− E(f̂)

)
ψIF (x)dx

(σ2
n)

1
2

;

z2 =

∫ (
E(f̂)− f(x)

)
ψIF (x)dx

(σ2
n)

1
2

(bias part).

First consider the functional in the numerator of z,

(nh)
1
2

∫ (
f̂(x)− f(x)

)
ψIF (x)dx,

and its expected value, mn, and variance, σ2
n. It follows that

mn = (nh)
1
2

∫ (
E(f̂)− f(x)

)
ψIF (x)dx.

Lemma 1. Under Assumptions 1 and 2 as n→∞, h→ 0, and nh→∞,
the variance σ2

n =
∫
K(w)2dwE(ψ2

IF )+

h
[∫

K(ω)2wdwE(ψ2
IF )′ − (EψIF (x))2

]
+ o(h),

for Ho, Hc∫
K(w)2dwE(ψ2

IF ) +O(h), for Hs.

(2)

Proof. See the Appendix.

The theorem below establishes convergence of the statistic z to standard
normal (as long as the bandwidth converges appropriately) in classes Ho

and Hc, and shows divergence to infinity for singular distributions (as long
as the set U captures at least one singularity point).

Theorem 1. For any given distribution under Assumptions 1 and 2 for

n → ∞ with bandwidth h → 0, nh → ∞,(i) (nh)
1
2 z1

D→N(0, 1) ; (ii) If the

distribution is in Hc, then (nh)
1
2 z2 is O(nh5)

1
2 and in Ho is (nh)

1
2 z2 =

7



O(nh3)
1
2 ; (iii) If the distribution is in Hs(U) the function (nh)

1
2 z2 diverges

to (negative) infinity at the rate O((nh)
1
2 ).

Proof. See the Appendix.

Corollary 1.
(i) Suppose that for some constant ch we have (undersmoothing in Hc)

h = ch([n lnn]−
1
5 ) = o(n−

1
5 ). For any distribution in Hc the test statistic

converges in distribution to N(0, 1); for any distribution in Hs it diverges

at rate c′h(n
2
5 (lnn)−

1
10 ), where c′h is a constant dependent on ch.

(ii) Suppose that (undersmoothing in Ho) h = ch([n lnn]−
1
3 ) = o(n−

1
3 ).

Then for a distribution in Ho we have convergence in distribution to N(0, 1)

and in Hs divergence at rate c′h(n
1
3 (lnn)−

1
6 ).

(iii) If the optimal bandwidth rate is used, then z = Op(1) in Ho or in
Hc, but diverges for any distribution in Hs at the corresponding rate.

2.3 The feasible statistic

To obtain a feasible statistic we replace the integrals and expectations in
the expression for the statistic z involving the unknown function ψIF (x) by
estimators. This feasible test statistic can be defined as

ẑ = (nh)
1
2

̂∫ (ψIF f̂)− ÊψIF
(σ̂2
n)

1
2

, (3)

where σ̂2
n is an estimator of var (nh)

1
2 [ ̂∫ (ψIF f̂)− ÊψIF ].

The next subsection proposes estimators for the functionals in the nu-
merator of z, subsection 2.3.2 provides limit properties of those functionals
and the expansion for the variance of the numerator, subsection 2.3.3 ex-
amines the bootstrap estimator of the variance and 2.3.4 shows that the
feasible statistic has the same asymptotic properties as the infeasible, z.

2.3.1 Estimators for the unknown functionals in the numerator

Define F̂ (x) = 1
nΣn

j=1I(xj ≤ x) and define the estimator

ÎF (x) =

∫ x

−∞
F̂ (y)dy =

1

n
Σn
j=1(x− xj)I(xj ≤ x),

8



alternatively

ÎFN (x) =
1

N
ΣN
i=1

{
I(x′i ≤ x)

}
F̂ (x′i), (4)

where x′i denotes one of the N points in an equally spaced grid over the
relevant range. The two estimators differ by O(N−1) for every sample and
there is no need to distinguish between them here. Then define

ψ̂IF (x) = φ(x)ÎF (x).

Using the kernel density estimator, the integral
∫
f̂(x)ψIF (x)dx is estimated

by

̂∫
(f̂)ψIF =

∫
f̂(x)ψ̂IF (x)dx (5)

=

∫ (
1

n
Σn
i=1

1

h
K

(
xi − x
h

))
ÎF (x)φ(x)dx.

This expression can be rewritten as

1

n2
Σn
i=1

∫
1

h
K(

xi − x
h

)φ(x)(x− xi)I(x− xi > 0) dx

+
1

n2
Σn
i 6=j

∫
1

h
K(

xi − x
h

)φ(x)(x− xj)I(x− xj > 0) dx =

1

n2
Σn
i=1

∫ 1

0
K(w)φ(xi − hw)hwdw (6)

+
1

n2
Σn
i 6=j

∫
(xi−xj)/h

K(w)φ(xi − hw)(xi − xj − hw)dw.

Of course, the integral can be replaced by a sum for computation, e.g.,

̂
f̂)

∫
(ψIF ) =

1

N
ΣN
i=1ψ̂IF (x′i)f̂(x′i). (7)

Here again the difference between the integral sum in (7) and the integral
in (6) is of O(N−1). The expectation is estimated by a sample average:

ÊψIF =
1

n
Σψ̂IF (xi). (8)
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2.3.2 Limit properties and moments of the estimators

Assume that conditions of Theorem 1 hold.
We can establish convergence for each of the estimators. By the law of

iterated logarithms for the continuous distribution function F (e.g. Kiefer
1961, Theorem 2) we have that in Ho and Hc

P

(
lim
n→∞

sup
x

n
1
2

(2−1 log log n)
1
2

∣∣∣F̂n(x)− F (x)
∣∣∣ = 1

)
= 1.

Thus sup
∣∣∣F̂ (x)− F (x)

∣∣∣ = Op(n
− 1

2
+ν) in Ho for arbitrary ν > 0; in Hs we

have sup
∣∣∣F̂ (x)− F (x)

∣∣∣ < 1.

Then using, e.g. the expression in (4),

sup
∣∣∣ψ̂IF (x)− ψIF (x)

∣∣∣
≤ sup

∣∣∣∣{ 1

N
ΣN
i=1

{
I(x′i ≤ x)

}
F̂ (x′i)−

∫ x

−∞
F (w)dw

}
φ(x)

∣∣∣∣
≤ sup

∣∣∣F̂ (x)− F (x)
∣∣∣ sup |2φ(x)x|

=

{
Op(n

− 1
2

+ν) in Ho,
Op(1) in Hs

; (9)

and the same rate applies to ψ̂IF (x) − ψIF (x). Then for N design points∣∣∣ 1
NΣN

i=1ψ̂IF (x′i)f̂(x′i)−
∫
f̂(x)ψIF (x)dx

∣∣∣ =∣∣∣∣ 1

N
ΣN
i=1

[
ψ̂IF (x′i)− ψIF (xi)

]
f̂(x′i) +

1

N
ΣN
i=1ψIF (x′i)f̂(x′i)−

∫
f̂(x)ψIF (x)dx

∣∣∣∣
=

{
Op(n

− 1
2

+ν) in Ho,
Op(1) in Hs

(10)

as long as N is large enough, Nn−1 →∞.

We now obtain the variance of the numerator of ẑ in (3) .

Lemma 2. Under the conditions of Theorem 1,

var

(
̂∫
(ψIF f̂)− ÊψIF

)
=

1

nh

∫
K(w)2dwE(ψ2

IF ) +
1

n
A+ o(n−1), (11)

where the expression for A is provided in the proof of the Lemma.

Proof. See the Appendix.
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2.3.3 The bootstrap estimator for the variance of the numerator

Consider next the bootstrap variance estimator, ˆvarB = σ̂2
n,B. We show that

this estimator gives a good approximation to var (nh)
1
2 [ ̂∫ (ψIF f̂)− ÊψIF ].

Lemma 3. Under the conditions of Theorem 1∣∣∣∣∣ ˆvarB

{
(nh)

1
2

(
̂∫
(ψIF f̂)− ÊψIF

)}
− var (nh)

1
2

(
̂∫
(ψIF f̂)− ÊψIF

)∣∣∣∣∣ = Op
(
(nh)−1

)
;

and if additionally h3n→∞, then

ˆvarB

{
(nh)

1
2

(
̂∫
(ψIF f̂)− ÊψIF

)}
=

∫
K(w)2dwE(ψ2

IF ) + hA+ op(h).

Proof. See the Appendix.

Thus the bootstrap estimator of variance is consistent with the rate
Op
(
(nh)−1

)
, and preserves the variance expansion in Lemma 2 if a band-

width satisfying h3n→∞ is used for the bootstrap.

2.3.4 The limit properties of the feasible statistic

Theorem 2. Under the conditions of Theorem 1 the asymptotic properties

of ẑ with σ̂2
n,B = ˆvarB

{
(nh)

1
2

(
̂∫ (ψIF f̂)− ÊψIF

)}
are the same as those

established for z in Theorem 1 and

ẑ =

{
z +Op(n

νh
1
2 ) in Ho for ν > 0;

z +Op(1) in Hs.

.

Proof. See the Appendix.

Corollary 1 above, concerning behavior of the statistic for different classes
of distribution, then applies to the feasible statistic as well.
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3 The size and power of the test

In this section the size and power of the proposed test based on ẑ are exam-
ined; asymptotic properties are derived in section 3.1 and the finite sample
performance is reported in 3.2.

3.1 Asymptotic properties of the test

Denote the size and power on a sample of size n at the quantile α by βn(α) =
Pr(|ẑ| > Φ−1(α)), and asymptotic size/power by β(α) = limβn(α).

Theorem 2 and the properties of the infeasible statistic lead to the fol-
lowing conclusions regarding asymptotic power and size.

Corollary 2. Under the conditions of Theorem 2,

β(α) =


α for h = o(n−

1
5 ) if F ∈ Hc;

α for h = o(n−
1
3 ) if F ∈ Ho;

1 for h = o(n−
1
5 ) if F ∈ Hs.

This corollary provides appropriate asymptotic size in Ho for the test and
shows that the power goes to 1 for any distribution from Hs.

It is known that a fully nonparametric test that has nontrivial power
uniformly is not possible. However, by restricting testing to a subclass in
Hc(Ho) vs a subclass in Hs it is possible to control uniformly the power
of the test for a given size. FH provide subclasses of distribution in Ho

and Hs for their test and show that βn converges uniformly to 0 over the
subclass of Ho and to 1 over the subset of Hs. The problem for their classes
is that different statistics are required for different subclasses in Ho. For
example, the statistic

∫
f̂2 is not suitable for a class that includes χ2

1 since

the functional
∫
f2 diverges; one could use

∫
f̂ (1+ 1

2
). One therefore requires

a priori knowledge of the class containing the null in order to select the
statistic.

Define subclasses Ho(C, ε) = {F ∈ Ho : ‖f − fv‖L1
< ε for fv such

that |fv| < C}; for any ε, any distribution with a density will eventually
fall into some such class; essentially any density can be arbitrarily close
to some bounded density. These subclasses do not contain any singular
distributions and are (partially) ordered as Ho(C1, ε1) v Ho(C2, ε2) for C1 ≤
C2 and ε1 ≤ ε2; the intersection of these classes for a fixed C is the class
of all distributions with density bounded by C. The subclasses for singular
distributions, Hδ,ζ

s are defined in FH (denoted there F δ,α
s ); they control the

“importance” of the singular part of the measure. For a set B, denote by

12



Bγ the set {x : infy∈B ‖x− y‖ ≤ γ} , and by µF the measure associated with
the distribution F, by λ the Lebesgue measure. Then

Hδ,ζ
s = {F ; such that for some B with µF (B) ≥ δ; λ(Bγ) ≤ ζ for some γ}.

Note that any Hδ,ζ
s contains absolutely continuous as well as singular dis-

tributions. A partial ordering is Hδ1,ζ1
s ⊆ Hδ2,ζ2

s for δ1 ≥ δ2 and ζ1 ≤ ζ2. A
singular distribution assigns a positive measure to some set of zero Lebesgue
measure so that as γ → 0, ζ → 0 if F ∈ Hs and B belongs to the support
of the singularity set. The parameters C, ε and δ, ζ can be selected so that
the classes Ho(C, ε) and Hδ,ζ

s do not intersect. These properties are proved
in the following lemma.

Lemma 4. Under the conditions of Theorem 1
(a) For any distribution F ∈ Ho and any ε there exists C such that

F ∈ Ho(C, ε).
(b) For any distribution F ∈ Hs and any ζ there exist B, δ (and γ) such

that F ∈ Hδ,ζ
s .

(c) For any C, ε there exists ζ such that Ho(C, ε) ∩Hδ,ζ
s = ∅.

Proof. See the Appendix.

Denote by H̄ the class of distributions over which, for a given φ, Assump-
tion 1(b) is satisfied uniformly. This excludes, for example, distributions
with support that is outside an arbitrary bounded set.

Lemma 5. Suppose that F ∈ H̄. Then for a given kernel K and for h
that satisfy conditions of Theorem 1, as n→∞,

(a) sup
F∈H̄

∣∣∣Pr
[
(nh)

1
2 z1 > Φ−1(α)

]
− α

∣∣∣→ 0;

(b) lim
ε→∞

sup
F∈H̄

Pr [|ẑ − z| > ε] = 0;

(c) sup
F∈H̄∩H0

Pr [|ẑ − z| > ε]→ 0.

Proof. See the Appendix.

For any of the subclasses defined here denote the intersection with H̄ by
overbar on the notation for the class: H̄ .,.

. = H .,.
. ∩ H̄. The next theorem

establishes uniform consistency and limit unbiasedness of the test.

Theorem 3. Under the assumptions of Theorem 1

(a) Power: inf
F∈H̄δ,ζ

s

βn(α) ≥ β̄n(α)↗ 1;

(b) Size: lim sup
F∈H̄c(C,ε)

βn(α) ≤ α for h = o(n−
1
5 ).

13



3.2 Finite sample evaluation

The simulations that we now report all use the bootstrap variance estimator
ˆvarB, which other experiments (not recorded here) showed to provide better

finite-sample conformity with the asymptotic distribution than was available
from the use of the asymptotic variance.

We consider three null and three corresponding alternative cases.
In the first, the data are generated from the U [0, 1] under the null (case

A) and under the alternative (case B) are generated from the singular distri-
bution considered by FH (the discrete uniform distribution on 100 equally
spaced discrete points in [0,1]). The second pairing consists of data gener-
ated under the null by a χ2

2 (case C) and under the alternative (case D) by
a 70% mixture of the a χ2

2 and 30% of a point distribution on the discrete
values {4, 5, 6, 7}. The third pairing uses a mixture of normal distributions
under the null, with mean and variance parameters (-0.767,1), (0.33,100)
and (4.33,100) in proportions 1

11 ,
6
11 and 4

11 (case E). Note that the large
difference in variances makes this a potentially difficult case, in which the
low-variance component of the mixture begins to take on some of the char-
acter of a singularity. The alternative in this case is based on the same
continuous mixture, with again a 30% mixture of a point distribution on
the discrete values {1, 2, 3, 4}.

Bandwidth h is selected by a simple rule in all cases:

h = (5× 10−4)

(
1 +

2000

n

)
n−

1
5 .

Bandwidth selection of course plays an important role in tests of this
type; this simple rule converges to the asymptotic rate of n−

1
5 but allows

for faster decline at smaller sample sizes.
In the uniform-null case A, conformity of the estimated density of the

statistic with the asymptotic normal distribution is very good at all sample
sizes. The corresponding case B alternative, used by FH, shows distributions
concentrated at large negative values; unsurprisingly, power is very high
against this alternative, which embodies 100 discrete steps.

Note that the alternative here can be thought of as a uniform distri-
bution on [0,1], reported to two digits of measurement precision; the case
therefore illustrates the importance of precision. In applications, finite pre-
cision of measurement implies that our empirical observations never literally
come from a continuous density. In typical empirical samples from contin-
uous densities, precision is sufficiently high that repeated observations will
not occur, and the distance between observable values is negligible. This

14



need not always be the case, however, as in this alternative where only 100
values are possible, and so with the sample sizes used here, many repeated
observations will occur. The test statistic will therefore reject either be-
cause the true distribution is non-smooth, because measurement precision
is inadequate, or both: we implicitly test a joint hypothesis of a continuous
density and arbitrarily precise measurement. Since measurement precision
is known, it should in practice be straightforward to evaluate whether inad-
equate precision contributes non-negligibly to any observed rejection.

Case C also shows fairly good conformity with the asymptotic normal,
although rare large values do occur. In comparing with Case D, which
embodies a mixture with masses on discrete points, note the difference in
scales: under the alternative much less probability mass is concentrated
near zero, and much more in regions that would correspond with rejection
at conventional levels. There is substantial power, but we do not observe in
these examples much increase with sample size. The additional probability
mass concentrated at a few points is much more difficult to detect than the
discrete alternative of Case B.

Case E is a relatively challenging one of a normal mixture with differing
variances, but the null distributions again appear to be converging on the
asymptotic standard normal, albeit relatively slowly and with lower than
unit variance, indicating an under-sized test. The corresponding alternative
distributions again show relatively little change with sample size, and only
moderate power.

4 Concluding remarks

The test of singularity developed here has a number of desirable properties.
It is appropriate for any pre-specified domain, not necessarily a single point;
by testing in various intervals the support of the singular (or non-smooth)
part of the distribution can be narrowed down. Feasible test statistics can be
computed straightforwardly, and have a pivotal asymptotic distribution so
that bootstrap testing can be implemented. Finite-sample conformity with
the asymptotic normal distribution is reasonable, and there is little evidence
of over-rejection. The divergence rate under the alternative is nonparamet-
ric, but is known.

The test can be extended to handle multivariate densities. If the distri-
bution function F (x1, ..., xk) is absolutely continuous then the density can be

15



defined as an ordinary function

f(x) = f(x1, ..., xk) =
∂kF (x1, ..., xk)

∂x1...∂xk
,

where f(x) integrates to F (x). However, whether f(x) exists as an ordinary
function or not, it can be defined as a generalized function, and the meth-
ods used above can be extended to test singularity jointly and in specified
directions.
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5 Appendix

Proof of Lemma 1.

The proof uses the derivations in the proof of Theorem 3 in VZW; here as
in that paper integrals involving generalized functions f(x), f ′(x) (with some
abuse of notation since they may not be defined pointwise) are understood as
the appropriate functionals applied to differentiable functions. Then using
the substitutions w = xi−x

h and y = x+ hw leads to

var

[
(nh)

1
2

∫ (
f̂(x)− f(x)

)
ψIF (x)dx

]
= var

[
(nh)

1
2

∫ (
f̂(x)− E(f̂)

)
ψIF (x)dx

]
=

∫ ∫
K(w)2f(x+ hw)dw (ψIF (x))2 dx

−h
(∫ ∫

K(w)f(x+ hw)dwψIF (x)dx

)2

=

∫ ∫
K(w)2f(y) (ψIF (y − hw))2 dwdy

−h
(∫ ∫

K(w)f(y)ψIF (y − hw)dwdy

)
Expanding in Ho, Hc where the function ψIF is continuously differentiable
provides∫
K(w)2dwEψ2

IF+h

∫
K(w)2dw

∫
f(x)

(
ψIF (x)2

)′
dx−h (EψIF (x))2+o(h)

(12)
Applying the Lipschitz condition for Hs concludes.

Proof of Theorem 1.

(i) Similarly to the proof of Theorem 3 (VZW) for ηhn(x) defined there,
but with the function ψIF (x) substituted as a test function, the random
variable

(ηhn(x), ψIF ) = (nh)
1
2

∫ (
f̂(x)− E(f̂)

)
ψIF (x)dx;

converges to the limit N(0, σ2
n) with σ2

n derived in Lemma 1.

17



(ii) The bias of the estimator as a generalized function was provided in
VZW (Theorem 2) for ψ ∈ D = Dl+1 and a kernel of order l + 1, as(

E(f̂), ψ
)
− (f(x), ψ)

= (−1)lhl
∫
F (x̃)

1

l!

∂l+1ψ

∂xl+1
(x̃)dx̃

∫
K(w)wldw +R(h)

with R(h) = o(hl) and is thus O(hl). When density exists integration by
parts provides

(−1)l−1hl
∫
f(x̃)

1

l!

∂lψ

∂xl
(x̃)dx̃

∫
K(w)wldw +R(h)

and so gives the same rate on the space Dl rather than Dl+1. When density
exists ψIF is twice differentiable, once continuously, but unless Hc holds
ψIF /∈ D2. So for Ho ψIF ∈ D1 and the rate O(h) holds for the bias, thus

(nh)
1
2O(h) = O(n

1
2h

3
2 ). Similarly for Hc, the rate O(h2) for bias provides

O(nh5)
1
2 for z2.

(iii) Consider
(
E(f̂), ψIF

)
− (f(x), ψIF ) . Denote by µF the measure

corresponding to F. If F is singular (by e.g. Lemma 2.1 of FH) there is a set
B ⊂ R such that µF (B) = µ > 0, while for δ → 0 the Lebesgue measure of a

δ−neighbourhood of B, λ(Bδ)→ 0. Then
[(
E(f̂), ψIF

)
− (f(x), ψIF )

]
=∫

E(f̂)ψIF (x)dx −
∫
f(x)ψIF (x)dx

≤ sup
x∈B

{
E(f̂)ψIF (x)

}
λ(Bγ)− EψIF (x).

Note that sup
∣∣∣E(f̂)

∣∣∣ ≤ sup |K(w)| ; supψIF (x) ≤ sup |xφ(x)| and denote

the bound on fhK by CfhK and the bound on ψIF by CψIF . Then for any
ε > 0 there is γ (ε) such that for any γ < γ(ε),

sup
x∈B̄(ε)

{
E(f̂)ψIF (x)

}
λ(Bγ) ≤ CfhKCψIF ε.

By Assumption 1(b), EψIF (x) > A > 0.Then for ε < A
2CfhKCψIF

,

[(
E(f̂), ψIF

)
− (f(x), ψIF )

]
≤ −A

2
. (13)
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From Lemma 1, Assumption 1(b) and (13)

(nh)
1
2 z2 ≤ − (nh)

1
2

A

2χ
∫
K(w)2dw

(1 + o(h))

and the result follows.

Proof of Lemma 2.

To find the variance, E

(
̂∫ (ψIF f̂)− ÊψIF

)2

−
[
E

(
̂∫ (ψIF f̂)− ÊψIF

)]2

consider

E

(
̂∫ (ψIF f̂)

)2

=

E

(∫ (
1

n
Σn
i=1

1

h
K(

xi − x
h

)

)
1

n
Σn
j=1(x− xj)I(xj ≤ x)φ(x)dx

)
(14)

·
(∫ (

1

n
Σn
l=1

1

h
K(

xl − y
h

)

)
1

n
Σn
k=1(y − xk)I(xk ≤ y)φ(y)dy

)
;

E

(
̂∫ (ψIF f̂)× ÊψIF

)
=

E

(∫ (
1

n
Σn
i=1

1

h
K(

xi − x
h

)

)
1

n
Σn
j=1(x− xj)I(xj ≤ x)φ(x)dx

)
(15)

·
(

1

n2
Σn
l 6=k(xl − xk)I(xk ≤ xl)φ(xl)

)
;

E
(
ÊψIF

)2
=

E

[(
1

n2
Σn
i 6=j(xi − xj)I(xj ≤ xi)φ(xi)

)(
1

n2
Σn
l 6=k(xl − xk)I(xk ≤ xl)φ(xl)

)]
.

(16)
Let α1(xi, x) = 1

hK(xi−xh );α2(xi, x) = (x−xj)I(xj ≤ x) and α3(xi, xj) =
(xi − xj)I(xj ≤ xi)φ(xi). Then

E

(
̂∫
(ψIF f̂)

)2

=
1

n4
ΣE

(∫ ∫
α1(xi, x)α2(xj , x)α1(xl, y)α2(xk, y)φ(x)φ(y)dxdy

)
;

E

(
̂∫
(ψIF f̂)× ÊψIF

)
=

1

n4
ΣE

(∫
α1(xi, x)α2(xj , x)α3(xl, xk)φ(x)dx

)
;

E
(
ÊψIF

)2
=

1

n4
ΣE (α3(xi, xj)α3(xl, xk)) . (17)
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Note that (
E ̂∫ (ψIF f̂)

)2

=

1
n4 ΣE

(∫ ∫
α1(xi, x)α2(xj , x)α1(xl, y)α2(xk, y)I (({i, j} ∩ {k, l} = ∅)φ(x)φ(y)dxdy

)
;

E

(
̂∫ (ψIF f̂)

)
× E

(
ÊψIF

)
=

1
n4 ΣE

(∫
α1(xi, x)α2(xj , x)α3(xl, xk)I (({i, j} ∩ {k, l} = ∅)φ(x)dx

)
;(

EÊψIF

)2
= 1

n4 ΣE (α3(xi, xj)α3(xl, xk)I (({i, j} ∩ {k, l} = ∅)) .

Thus the terms in the sums in (14-16) that would contribute to the
variance are those where the sets {i, j} and {k, l} have exactly one or two
elements in common. The sums involving subsets with any two common
elements among {i, j, l, k} will contribute at most O( 1

n2h
) to the variance:

this follows from the fact that the number of such terms is proportionate to
n2 up to O(n) and the expectation of each such term is at most O(h−1), as
will follow from the computations of moments below.

Consider now the cases when {i, j} and {k, l} have exactly one element
in common and i 6= j, l 6= k; there are 4n(n − 1)(n − 2) terms of this sort
that fit into four cases:

(a) i = l; (b) i = k; (c) j = l and (d) j = k.
Note that

∫
(y−z)I(y−z > 0)f(z)dz = IF (y) and grows as |y| at infinity

(as y → +∞). Define the following functions given by integrals and note the
order of growth at infinity:

I1(y) =

∫
(y − z)I(y − z > 0)f(z)φ(z)dz; bounded;

I2(y) =

∫
(z − y)I(z − y > 0)f(z)φ(z)dz; bounded;

I3(y) =

∫
(y − z)I(y − z > 0)I2(z)f(z)dz; grows as |y| ;

I4(y) =

∫
(y − z)I(y − z > 0)IF (z)f(z)φ(z)dz; bounded.

The evaluation of growth uses Assumption 1.

The contribution to the variance resulting from case (a) is the term E

(
̂∫ (ψIF f̂)

)2

for
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i = l 6= j 6= k, noting that
∫

(y − xk)I(xk ≤ y)f(xk)dxk = IF (y) and∫ ∫
1

nh

∫
1

h
K(

xi − x
h

)K(
xi − y
h

)f(xi)dxiφ(x)IF (x)φ(y)IF (y)dxdy

=
1

nh

∫
K(w)2dwEψ2

IF +
1

n

∫
K(w)2dwE

(
ψIF (x)2

)′
dx− 1

n
(EψIF (x))2 + o(

1

n
);

similarly to the derivation in Lemma 1. From the term−2E

(
̂∫ (ψIF f̂)× ÊψIF

)
,

−2

∫ ∫
1

n

∫
1

h
K(

xi − x
h

)(x−xj)I(xj < x)φ(x)dx(xi−xk)I(xk ≤ xi)φ(xi)f(xi)f(xj)f(xk)dxidxjdxk

= −2
1

n

∫ ∫ (∫
K(w)(xi − xj − hw)I(xi − xj − hw > 0)φ(xi − hw)dw

)
IF (xi)φ(xi)f(xi)f(xj)dxidxj

= −2
1

n
E(ψ2

IF ) +O(
h

n
);

from the term E(ÊψIF )2 the contribution is, by a similar integration, 1
nE(ψ2

IF ).
For (b) i = k from the first part the contribution is the same as for case

(c): j = l and is

∫ ∫ [∫
K(w)f(x+ hw)dw

]
1

n

∫
(x− xj)I(xj < x)

1

h
K(

xj − y
h

)f(xj)dxj

∫
(y − xk)I(xk < y)f(xk)dxkφ(x)φ(y)dxdy =

1

n

∫ ∫
φ(x− hw)K(w)dwf(x)(

∫
(x− y − hv)I(y + hv < x)K(v)f(y + hv)dvIF (y)φ(x)φ(y)dxdy =

1

n

∫ ∫
f(x)φ(x)(x− z)I(z < x)φ(x)dx

∫
K(v)f(z)φ(z − hv)IF (z − hv)dvdz +O(

h

n
)

1

n

∫
I2(z)φ(z)IF (z)f(z)dz +O(

h

n
) =

1

n
E(I2ψIF ) +O(

h

n
).

From the second term the contribution to variance is

− 2

n
E(I4ψIF ) +O(

h

n
);

and from the third the contribution is

1

n
E(ψIF I4).
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For (c) the contributions to variance from the first through third terms are
1
nE(I2ψIF ) +O(hn), − 2

nE(I2ψIF ) +O(hn), and 1
nE(ψIF I2).

Finally for (d), j = k, from the first term 1
nE(I2

2 ) + O(hn); from the
second − 2

nE(I3φ); from the third 1
nE(I2

2 ).
Summing up, we find that the variance equals

1

nh

∫
K(w)2dwEψ2

IF +
1

n

∫
K(w)2dwE

(
ψIF (x)2

)′
dx− 1

n
(EψIF (x))2

−2
1

n
E(ψ2

IF ) +
1

n
E(ψ2

IF )

+
1

n
E(I2ψIF )− 2

n
E(I4ψIF ) +

1

n
E(ψIF I4)

+
1

n
E(I2ψIF )− 2

n
E(I2ψIF ) +

1

n
E(ψIF I2)

+
1

n
E(I2

2 )− 2

n
E(I3φ) +

1

n
E(I2

2 ) + o(
1

n
)

=
1

nh

∫
K(w)2dwEψ2

IF +
1

n
A+ o(

1

n
).

Proof of Lemma 3.

For a sufficiently large number of bootstraps the bootstrap estimator
of a moment replaces the expectation operator E by expectation En with
respect to the empirical distribution, Fn. In the computation of the terms
in En the density f (here treated as a generalized function) is replaced by
the generalized density for the empirical distribution which is the average
of δ−functions: fn(x) = 1

nΣδ(x − xi), so that for any continuous function
g one has Eng =

∫
fn(x)g(x)dx = 1

nΣg(xi). For pairwise distinct indices
fn(xi, xj)I(xi 6= xj) = 1

n(n−1)Σl 6=kδ(xi − xl)δ(xj − xk), etc.

Consider the terms in the sums (17); any such term, ωn(i, j, l, k) is given
by an integral involving some products of the α′s; consider these terms for
the cases (a)-(d) in Lemma 2. As was shown in the proof of that lemma the
contribution from the sum of such terms, E 1

n4 Σcase(·)ωn(i, j, l, k) is either

O( 1
nh), or O( 1

n); denote E 1
n4 Σcase(·)ωn(i, j, l, k) by E(ωcase(·)). From the

Chebyshev inequality, denoting E(nhωn) by ω,

Pr(
∣∣En(ωcase(·))− E(ωcase(·))

∣∣ > ε) ≤
var(En(ωcase(·)))

ε2

and

Pr (|nhEn(w)− nhE(w)| > ε) ≤ var (nhEn(w))

ε2
=

(nh)2 varEn(w)

ε2
.
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Similarly to the argument in the proof of Lemma 2 the terms that will
determine the variance var(En(ωcase(·))) now involve two sets of four indices,
(i1, j1, l1, k1) and (i2, j2, l2, k2). Considerations of the number of terms with
different numbers of coinciding indices provides that the terms that will
determine the variance have exactly two indices in common between the
two sets, in addition to the fact that in each set of indices there are already
exactly two indices in common between {i·, j·} and {l·, k·} . There are thus
O(n5) terms of that type. The largest expectation comes from the terms
involving products of four factors of the type α1(xm, x) = 1

hK(xm−xh ) where
all the indices are the same: i1 = l1 = i2 = l2. The expectation then will
be O( 1

h3
). Thus var(En(ωcase(·))) = O(n5 1

n8h3
) = O(n−3h−3). Multiplying

En(ωcase(·)) by nh provides the rate of consistency for the bootstrap variance
estimator as O

(
(nh)−1

)
.

To preserve the smallest order term of O(n−1) in the expansion of the
variance in Lemma 2 the largest order of term in var(En(ωcase(·))) needs to
be no larger than o(n−2). If h is selected to be such that nh3 →∞ implying
n−1h−3 → 0 we have the result.

Proof of Theorem 2.

We show that in Ho the difference ẑ − z is op(1) and that in Hs the
feasible statistic ẑ diverges at the same rate as the infeasible statistic z,

Op

(
(nh)

1
2

)
. Consider the expression in the numerator of the statistic ẑ.

From (9,10) it follows that in Ho the numerators of z (denoted num(z))

and of ẑ (num(ẑ)) differ by r̂ = Op(n
− 1

2
+ν · n

1
2h

1
2 ) = Op(n

νh
1
2 ) = op(1)

since ν is arbitrarily small; in Hs the difference is Op(1). By Lemma 3 the
denominator of ẑ differs from the positive (bounded from zero and infinity)
quantity d =

∫
K(w)2dwEψ2

IF by Op(h) both in Ho and Hs. Then

ẑ = (num(z) + r̂)

[
d

(
1 +

Op
(
(nh)−1

)
d

)]−1

=

{
(d−1)num(z)(1 +Op(n

νh
1
2 ) in Ho

(d−1)num(z)(1 +Op(1) in Hs.

The theorem follows.

Proof of Lemma 4.

(a) For F ∈ Ho the density function, f, is in L1; consider for any constant
C the set

B(f, C) = {x : f(x) ≥ C} ;
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then
∫
B(f,C) f(x)dx ≥ Cλ(B(f, C)). If C ↗ ∞, then λ(B(f, C)) ↘ 0 and

since f is absolutely integrable
∫
B(f,C) f(x)dx ↘ 0; thus Cλ(B(f, C)) ↘ 0.

Then select a large enough C such that
∫
B(f,C) f(x)dx < ε

4 . Consider the

function sup{f(x), C}; this is in L1 and can be approximated by a step-
function: for ε

2 there exists a step function fstep such that |fstep| ≤ C and
‖sup{f(x), C} − fstep‖L1

< ε
2 . Then

‖f(x)− fstep‖L1
≤

∫
B(f,C)

f(x)dx+ Cλ(B(f, C)) + ‖sup{f(x), C} − fstep‖L1

≤ ε

4
+
ε

4
+
ε

2
= ε.

(b) This follows from Lemma 2.1 in FH.
(c) Suppose that F ∈ Ho(C, ε); then for any set B with λ(Bγ) < ζ we

have µF (B) ≤ ε+ ζC. If δ, ζ are such that δ > ε+ ζC, then F /∈ Hδ,ζ
s .

Proof of Lemma 5.

(a) Since for Ai ≡ 1
h

∫
K(x−xih )ψIF (x)dx,

z1 =
1
nΣ(Ai − EAi)

varAi
,

the conditions of the Lindeberg-Feller central limit theorem are fulfilled via
moments that are uniformly bounded on H̄, by the boundedness of K(w)
and Assumption 1.

(b) Write

|ẑ − z| =

∣∣∣∣num (ẑ)

den(ẑ)
− num (z)

den(z)

∣∣∣∣∣∣∣∣∣∣num (ẑ)− num (z) + num (ẑ) den(z)−d
d − num (z) den(ẑ)−d

d

d
(

1 + den(ẑ)−d
d

)(
1 + den(z)−d

d

)
∣∣∣∣∣∣ .

This expression is bounded in probability uniformly, since we can apply uni-
form bounds on the moments for |num (ẑ)− num (z)| and use Assumption
1 (b) for the bound on d; for F ∈ H̄ note that |den(z)− d| goes to zero in
probability uniformly.

(c) In Ho the quantity |num (ẑ)− num (z)| goes to zero by Theorem 2
and since the moments are bounded uniformly the convergence is uniform.

24



Proof of Theorem 3.

(a) Write the statistic as ẑ = (nh)
1
2 z2 + (nh)

1
2 z1 + (z − ẑ) . Consider

c̃n′ > Φ−1(α) (nh)
1
2
−ν (with arbitrarily small ν). By Lemma 5(a,b),

sup
F∈H̄

Pr
(∣∣∣(nh)

1
2 z1 + (z − ẑ)

∣∣∣ > Φ−1(α) (nh)
1
2
−ν
)
→ 0.

Then by the uniform condition (13) in the proof of Theorem 1 (iii),

inf
Hδ,ζ
s

Pr(|ẑ| > Φ−1(α))

≥ Pr
(∣∣∣(nh)

1
2 z2

∣∣∣ > 2Φ−1(α) (nh)
1
2
−ν ∩

∣∣∣(nh)
1
2 z1 + (z − ẑ)

∣∣∣ < Φ−1(α) (nh)
1
2
−ν
)

> Pr
(∣∣∣(nh)

1
2 z2

∣∣∣ > 2Φ−1(α) (nh)
1
2
−ν
)
− Pr

(∣∣∣(nh)
1
2 z1 + (z − ẑ)

∣∣∣ > Φ−1(α) (nh)
1
2
−ν
)

→ 1.

Therefore inf
H̄δ,ζ
s

βn → 1.

(b) The result follows from (a) and (c) of Lemma 5 and (ii) of Theorem
1..
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Figure 1

Empirical densities of test statistics
5000 replications; 100 bootstrap samples
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Figure 2

Empirical tail probabilities at nominal values from N(0,1)
5000 replications; 100 bootstrap samples
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