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Résumé / Abstract 
 
De façon générale, les rendements financiers sont caractérisés par des queues épaisses et une 
certaine asymétrie. Ainsi, les modèles à variance conditionnelle dotés de ces caractéristiques 
donnent de meilleurs résultats que les modèles plus limités. La différence dans les résultats 
obtenus peut être particulièrement importante lorsqu’il s’agit d’évaluer des quantités qui 
dépendent des caractéristiques des queues, y compris les mesures du risque, tel que le manque à 
gagner prévu. Dans le cas actuel, en recourant à une généralisation récente de la distribution 
asymétrique suivant la loi t de Student, de sorte que des paramètres distincts limitent l’asymétrie 
et l’épaisseur de chaque queue, nous intégrons les rendements financiers quotidiens et estimons le 
manque à gagner prévu dans le cas de l’indice S&P 500 et de certaines actions de compagnies 
individuelles. La distribution généralisée est utilisée pour les innovations normalisées contenues 
dans un modèle asymétrique non linéaire de type GARCH. Les résultats démontrent de façon 
empirique l’utilité de la distribution généralisée pour améliorer les prévisions au sujet du risque de 
perte en cas de baisse du marché des actifs financiers. 

 
Mots clés : distribution asymétrique, manque à gagner prévu, modèle NGARCH 
(Nonlinear Generalized AutoRegressive Conditional Heteroscedasticity) 
 
 

Financial returns typically display heavy tails and some skewness, and conditional variance 
models with these features often outperform more limited models. The difference in performance 
may be especially important in estimating quantities that depend on tail features, including risk 
measures such as the expected shortfall. Here, using a recent generalization of the asymmetric 
Student-t distribution to allow separate parameters to control skewness and the thickness of each 
tail, we fit daily financial returns and forecast expected shortfall for the S&P 500 index and a 
number of individual company stocks; the generalized distribution is used for the standardized 
innovations in a nonlinear, asymmetric GARCH-type model. The results provide empirical 
evidence for the usefulness of the generalized distribution in improving prediction of downside 
market risk of financial assets. 
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1 Introduction

Substantial progress has been made in the modeling and forecasting of finan-
cial asset returns since the ARCH and GARCH models were first developed
in Engle (1982) and Bollerslev (1986). A key feature of this progress has been
the incorporation of asymmetries and thicker tails into conditional variance
models, both through the structures of the models themselves (see for ex-
ample Engle and Ng 1993, which will be used below) and through the use
of thick-tailed distributions for the standardized innovations of the models;
Bollerslev (1987) pioneered the use of the t− distribution for this purpose,
yielding thicker-tailed predictive densities for asset returns than were avail-
able through the GARCH specification alone.

Subsequent literature has explored the use of skewed versions of the
Student-t for the conditional distribution. Hansen (1994) used a skewed
t− for this purpose, and other skew extensions of the t− distribution have
been proposed by Fernandez and Steel (1998), Theodossiou (1998), Branco
and Dey (2001), Bauwens and Laurent (2002), Jones and Faddy (2003), Sahu
et al. (2003), Azzalini and Capitanio (2003), Aas and Haff (2006) and others.
The availability of relatively long data sets has allowed the estimation and
exploitation of these effects, and empirical investigation has found that such
skew extensions have value in characterizing the pattern of financial returns;
see for example Mittnik and Paolella (2003) and Alberg et al. (2008).

The distributions just mentioned use two parameters which together con-
trol skewness and thickness of the two tails. Zhu and Galbraith (2009) pro-
pose a further extension, in which two parameters control thickness of the
two tails and a third allows skewness to change independently of the tail
parameters. Because there is the potential that tail thickness differs non-
negligibly between the left and right tails, this extension can allow better
fitting of the rates of tail decay and therefore can facilitate better estimation
and forecasting of downside risk, for which the left tail alone is relevant. With
increasingly large data sets describing financial asset returns, this extension
offers the potential for further improvement in the subtlety of our fit to data,
and therefore in the accuracy of forecasts of quantities related to risk.

The present paper explores the use of this distribution for conditional as-
set returns, and in particular the application to forecasting downside risk
through the expected shortfall, a measure which is sensitive to losses in
the extreme tail of the distribution of returns. The generalized asymmet-
ric Student-t (AST) distribution proposed by Zhu and Galbraith (2009)
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is to model the standardized innovations from the nonlinear asymmetric
NGARCH model of Engle and Ng (1993). We find evidence of both im-
proved fits to financial return data, and improved forecasts of the expected
shortfall.

The next section of the paper gives the form of the AST distribution
and summarizes results on associated risk measures. Section 3 describes
the financial return models and the financial return data that will be used.
Section 4 gives results on the core problem of predicting downside risk, in
the form of the expected shortfall. A final section concludes.

2 The generalized asymmetric Student-t dis-

tribution

We begin with a brief review, from Zhu and Galbraith (2009), of results
that characterize the distribution to be used below in modeling standardized
innovations.

2.1 The AST density

The AST distribution is defined such that its standard probability density
function (location and scale parameters are 0 and 1 respectively) is

fAST (y;α, υ1, υ2) =


α
α∗
K(υ1)

[
1 + 1

υ1
( y

2α∗
)2
]−υ1+1

2
, y ≤ 0

1−α
1−α∗K(υ2)

[
1 + 1

υ2
( y

2(1−α∗))
2
]−υ2+1

2
, y > 0

(1)

where α ∈ (0, 1) is the skewness parameter, υ1 > 0 and υ2 > 0 are the left
and right tail parameters respectively, K(υ) ≡ Γ((υ + 1)/2)/[

√
πυΓ(υ/2)], 1

and α∗ is defined as α∗ = αK(υ1)/[αK(υ1) + (1− α)K(υ2)]; as well,

α

α∗
K(υ1) =

1− α
1− α∗

K(υ2) = αK(υ1) + (1− α)K(υ2) ≡ B. (2)

We can write a general form of the AST density, with location and scale
parameters µ and σ, as 1

σ
fAST (y−µ

σ
;α, υ1, υ2). As well, a re-scaled version is

1Γ(·) is the gamma function.
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useful for computational convenience:

fAST (y; θ) =


1
σ

[
1 + 1

υ1

(
y−µ

2ασK(υ1)

)2
]−(υ1+1)/2

, y ≤ µ;

1
σ

[
1 + 1

υ2

(
y−µ

2(1−α)σK(υ2)

)2
]−(υ2+1)/2

, y > µ,

(3)

where θ = (α, υ1, υ2, µ, σ)T .
Figure 1 illustrates AST densities using (3) with various values for α, υ1, υ2;

in each case the location parameter µ is 0 and the scale parameter σ is 1. In
left-hand-side panels, υ1 is held constant at 2 while υ2 varies; in right-hand-
side panels, υ2 = 2 while υ1 varies. The central panels illustrate the α = 0.5
case; these densities are of course symmetric in the υ1 = υ2 cases which are
among those depicted.

2.2 Downside risk measurement in the AST

The Expected Shortfall (ES) is a measure of risk of loss that has gained in-
creasing prominence in recent financial literature, particularly because (un-
like the Value at Risk) it is sensitive to extreme negative returns. 2

Zhu and Galbraith (2009) show that the expected shortfall for a standard
AST random variable Y at a point in the support of the distribution q, i.e.

ESAST (q) ≡ E(Y | Y < q),

can be expressed as ESAST (q) =

−4B

FAST (q)

α∗2
(

υ1

υ1 − 1

)[
1 +

1

υ1

(
q ∧ 0

2α∗

)2
](1−υ1)/2

+ (1− α∗)2·

·
(

υ2

υ2 − 1

)[1 +
1

υ2

(
q ∨ 0

2(1− α∗)

)2
](1−υ2)/2

− 1

 , (4)

with a ∧ b = min{a, b} and a ∨ b = max{a, b}, and B is defined as in (2).

2An expression for Value at Risk in the AST is given in Zhu and Galbraith 2009, but
is not used in the present study.
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Now consider estimation of the j-step-ahead forecast of the conditional
ES; zt+j = (rt+j −m)/σt+j is assumed to be an AST random variable with
zero mean and unit variance. Then based on the predicted values m̂t+j|t,

σ̂t+j|t, ω̂t = ω(β̂t) and δ̂t = δ(β̂t), where ω(·) and δ(·) are defined in (10), we
expect at time t that, conditional on the information available in period t,

Ŷ AST ≡ ω̂t + δ̂t(rt+j − m̂t+j|t)/σ̂t+j|t

should approximately have a standard AST density with parameter β̂t if the
model specification is correct. Therefore, the j-step-ahead forecast of the
conditional ES can be estimated as follows:

ESt+j|t(q) ≡ Et(rt+j | rt+j < q) = m̂t+j|t+σ̂t+j|t

[
ESAST (qt+j; β̂t)− ω̂t

δ̂t

]
(5)

where

qt+j = ω̂t + δ̂t

[
q − m̂t+j|t

σ̂t+j|t

]
.

Note that, in the calculation of the conditional ES, we also need to give the
expressions for ESAST (q; β). That is, the downside risk is determined not
only by the specification of the conditional mean and NGARCH equations,
but also by the distributional choice for the innovations.

3 Models and data

In this section, we examine forecasts of the expected shortfall with GARCH-
class models and compare performance with error distributions given by the
usual Student-t (ST), the SST (skewed Student-t in which υ1 = υ2 is imposed
in the AST), the AST with α restricted to 1/2, and finally the general AST.
Empirical evidence has indicated that daily (for example) financial return
data continue to exhibit conditional tail-fatness even after allowing for the
GARCH effect (see Bollerslev et al., 1992).

GARCH-class models have been widely and successfully used to model
financial asset returns. In general, a return process r = {rt} is modeled as3

rt = mt + σtzt, (6)

3As noted by Andersen et al (2005), this representation is not entirely general as there
could be higher-order conditional dependence in the innovations.
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where, following standard usage, mt and σ2
t are the conditional mean and

variance of rt given the information set available at time t − 1 (i.e., mt =
Et−1(rt) and σ2

t = Et−1(rt−mt)
2), and the zt are i.i.d. innovations with zero

mean and unit variance.
To capture a potential leverage effect, we adopt the non-linear asymmetric

GARCH (NGARCH) structure of Engle and Ng (1993). The conditional
distribution of the return process is modeled as having an AST distribution.
For simplicity, we assume mt = m, for any t; the return series rt is an AST-
NGARCH(1,1) process,

rt = m+ σtzt, zt ∼ i.i.d.AST (0, 1),

σ2
t = b0 + b1σ

2
t−1 + b2σ

2
t−1(zt−1 − c)2

= b0 + b1σ
2
t−1 + b2(rt−1 −m− cσt−1)

2. (7)

The parameter c in the NGARCH equation (7) captures the leverage effect;
that is, a positive value of c gives rise to a negative correlation between the
innovations in the asset return and its conditional volatility. The j-step-
ahead forecast of σ2

t+j, denoted by σ2
t+j|t, is defined as σ2

t+j|t ≡ Et
(
σ2
t+j

)
:

σ2
t+1|t = b0 + b1σ

2
t + b2(rt −m− cσt)2, (8)

σ2
t+j|t = b0 +

[
b1 + b2(1 + c2)

]
σ2
t+j−1|t, j ≥ 2. (9)

We consider daily returns on the S&P500 composite index and several
individual company stocks (Adobe Systems, Bank of America, JP Morgan,
Johnson & Johnson, Merck, and Starbucks). The data sets end at December
31 2008; the beginning dates and numbers of observations are given in Table
5. 4

3.1 Estimation and goodness of fit

The maximum likelihood estimate of the parameter vector φ, where φ =(m,
b0, b1, b2, c, α, υ1, υ2), is obtained by maximizing the log-likelihood function

lT (φ; r) =
T∑
t=1

{
log δ − log σt + log fY (ω + δ

rt −m
σt

; β)

}
, (10)

4Data come from CRSP (Center for Research on Security Prices, University of Chicago).
The return rt in period t is defined as rt = 100× (Pt − Pt−1)/Pt−1, where Pt is the level
of the index at time t.
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where fY (·; β) is the standard AST density function with the distributional
parameters β = (α, υ1, υ2)

′, ω ≡ ω(β) and δ ≡ δ(β) denote the mean and
standard deviation of fY (·; β) respectively; they are given by

E(Y ) = 4

[
−αα∗υ1K(υ1)

υ1 − 1
+ (1− α)(1− α∗)υ2K(υ2)

υ2 − 1

]
= 4B

[
−α∗2 υ1

υ1 − 1
+ (1− α∗)2 υ2

υ2 − 1

]
, (11)

V ar(Y ) = 4

[
αα∗2

υ1

υ1 − 2
+ (1− α)(1− α∗)2 υ2

υ2 − 2

]
−16B2

[
−α∗2 υ1

υ1 − 1
+ (1− α∗)2 υ2

υ2 − 1

]2

, (12)

where K(·) and B are defined in (1) and (2). 5

To examine the significance of asymmetric behavior in the tails, we con-
sider the AST and the nested distribution classes mentioned above: the AST
with α = 1/2 to represent asymmetry arising only from different tail behav-
ior, the SST (i.e. AST with υ1 = υ2), and the ST (i.e. AST with α = 1/2 and
υ1 = υ2). The ML estimates of the parameters and their standard deviations
for the S&P 500 index data are displayed in Table 1; for individual com-
pany stocks we report below a more limited set of results on fit and forecast
performance.

Table 1: Parameter estimates for AST-NGARCH(1,1) models

m b0 b1 b2 c α υ1 υ2

AST .0214
(.0115)

.0096
(.0019)

.8763
(.0127)

.0592
(.0061)

1.011
(.1016)

.4989
(.0169)

6.36
(.9154)

15.98
(5.622)

AST, α=0.5 .0212
(.0113)

.0096
(.0021)

.8762
(.0125)

.0592
(.0065)

1.011
(.0957)

6.40
(.6765)

15.73
(3.899)

SST .0220
(.0109)

.0100
(.0021)

.8729
(.0136)

.0599
(.0061)

1.023
(.0968)

.532
(.0094)

8.50
(.9329)

ST .0318
(.0108)

.0092
(.0020)

.8755
(.0132)

.0589
(.0064)

1.015
(.1002)

8.27
(.9262)

5The ML estimation is implemented in Matlab 7 with the command ‘fmincon’ and
initial value φ0 = (mean(r), b0, 0.9, 0.05, 0, 0.5, 6, 6), where b0 is given by the sample
variance of return data multiplied by 1− b1 − b2 = 0.05.
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Following Mittnik & Paolella (2003), we employ four criteria for compar-
ing the goodness of fit of the candidate models. The first is the maximized
log-likelihood value (L), which can be viewed as an overall measure of good-
ness of fit. The second and the third are the AICC (Hurvich & Tsai, 1989)
and the SBC or SIC (Schwarz, 1978), which are given by

AICC = −2L+
2T (k + 1)

T − k − 2
, SBC = −2L+

k log(T )

T
; (13)

k denotes the number of estimated parameters and T the number of obser-
vations. The fourth is the Anderson-Darling statistic (Anderson & Darling,
1952), defined as

AD = sup
−∞<x<+∞

√
T

∣∣∣FT (x)− F̂ (x)
∣∣∣√

F̂ (x)(1− F̂ (x))
, (14)

where F̂ (x) denotes the estimated (parametric) cdf of the innovations, and
FT (x) is the empirical cdf of (ex post) innovations, i.e., FT (x) = `/T if there
are only ` ex post innovations ẑt = (rt − m̂)�σ̂t less than or equal to x.

The AD statistic is a reasonable measure of the discrepancy or “distance”
between the empirical cdf FT (x) and the hypothetical distribution F (x); this
statistic gives appropriate weight to the tails of the distribution so that it can
be used to measure goodness of fit in the tails. In our applications, since the
innovations are assumed to have zero mean and unit variance, the estimated
cdf of the innovations, F̂ (x) in (14), can be expressed as F̂ (x) = FY (ω̂+δ̂x; β̂),

where FY (·; β) is the cdf of the standard AST with β = (α, υ1, υ2)
T , β̂ is the

ML estimate of β, and ω̂ and δ̂ are given by ω̂ = ω(β̂) and δ̂ = δ(β̂), which
are, respectively, the estimated mean and standard deviation of FY (·; β). For
simplicity we compute the AD statistic as follows:

AD = max
j
ADj, ADj =

√
T

∣∣∣FT (ẑj,T )− F̂ (ẑj,T )
∣∣∣√

F̂ (ẑj,T )(1− F̂ (ẑj,T ))
, (15)

where {ẑj,T}Tj=1 are the sorted (in ascending order) ex post innovations, so
FT (ẑj,T ) = j/T .
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Table 2: Goodness-of-fit measures for the AST-NGARCH(1,1) models

L AICC SBC AD
AST -6208.6 12435 12417 2.68

AST, α = 0.5 -6208.6 12433 12417 2.71
SST -6212.2 12440 12424 4.97
ST -6217.2 12448 12434 5.95

Table 2 displays the four measures of goodness-of-fit for the estimated
AST-NGARCH(1,1) models on S&P 500 index data; for individual compa-
nies, Table 4 below reports the model ranked best by each measure. For the
S&P 500, the AD statistic ranks the distribution with full asymmetry as the
best; by SBIC full asymmetry and the restriction to α = 1/2 are equivalent
to five significant digits; the AICC selects the restricted version. No criterion
selects the SST or ST. The LR test, LR = 2(Lu − Lr), where Lu and Lr are
respectively unrestricted and restricted log-likelihood values, does not reject
α = 1/2, but does reject the restriction to one tail parameter rather than
two.

For individual company data, the general AST again tends to be selected,
but there are two cases in which the AICC is the same (to four significant
digits) for general AST and SST, and there are two cases in which SST is
selected by one of the other criteria. While α = 1/2 is not rejected on the
S&P 500 data, the restriction is typically rejected in the individual company
data (for brevity we do not report all results for individual company data,
but we give a summary in Table 4).

4 Prediction performance for downside risk

To predict the downside risk in the period t + j (j = 1, 2, 3, ...) using the
information available in period t, we must give a j-step-ahead forecast of
the conditional distribution of returns rt+j, F̂t+j|t(rt+j). We can express the
expected shortfall measure of predictive downside risk as follows: condi-
tional on a return lower than q after j periods, the expected return will be
ESt+j|t(q). Given models specified in (6) and (7), the conditional distribution
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is time-varying only due to the time-varying conditional mean and variance.
Therefore forecasting the conditional distribution amounts to estimating the
parameters of the model using the data available at time t, and then fore-
casting the conditional mean (mt+j) and variance (σ2

t+j) of rt+j. Denote

the time-t ML estimates of these parameters by (m̂t, b̂0t, b̂1t, b̂2t, ĉt, β̂
′
t) and

the estimates of the j-step-ahead forecasts of mt+j and σ2
t+j by m̂t+j|t and

σ̂2
t+j|t, respectively. Then, m̂t+j|t = m̂t for any j, and σ̂2

t+j|t is obtained by

substituting the estimated parameters into (8) and (9),

σ̂2
t+1|t = b̂0t + b̂1tσ̂

2
t + b̂2t(rt − m̂t − ĉtσ̂t)2,

σ̂2
t+j|t = b̂0t +

[
b̂1t + b̂2t(1 + ĉ2t )

]
σ̂2
t+j−1|t, j ≥ 2.

To check predictive performance out-of-sample, we split the sample of
S&P index data, retaining in this case N = 2000 points for out-of-sample
evaluation.6 We then recursively evaluate ESt+j|t(q), N = 2000 ≤ t ≤ T − j,
for one and five steps ahead: j = 1, 5. We set the threshold (loss) returns
q = −1.2%,−1%,−0.8%,−0.6%. For each of (j, q), if the model is correctly
specified we expect the average of the observed rt+j-values (rN+j, ..., rT ) less
than q should be approximately equal to the ESt+j|t(q) predicted by the
model. If the observed expected shortfall

ÊSj(q) ≡
1

J

T−j∑
t=N

rt+j1{rt+j < q}, where J =

T−j∑
t=N

1{rt+j < q} (16)

is lower (higher) than the average predictive ES,

ÊS
M

j (q) ≡ 1

J

T−j∑
t=N

ESt+j|t(q)1{rt+j < q}, (17)

then the model tends to underestimate (overestimate) the risk. This is mea-

sured by the mean error, MEj(q) ≡ ÊS
M

j (q) − ÊSj(q). Another important
measure of predictive out-of-sample performance is the mean absolute error

MAEj(q) ≡
1

J

T−j∑
t=N

∣∣∣ESt+j|t(q)− ÊSj(q)
∣∣∣ 1{rt+j < q}. (18)

6For individual company data, we use half of the sample for out-of-sample evaluation
to a maximum of 3000 data points, so that N is the minimum of T/2 and 3000.
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Table 3 shows the predictive performance for the expected shortfall risk on
the S&P 500 data; the entries in the table are the mean errors 100MEj(q) and
the mean absolute errors 100MAEj(q) of the expected shortfall predictions
for one and five steps ahead.

From the mean errors MEj, we see that the AST-type models tend to
overestimate the risk (have a negative mean error) for larger loss thresh-
olds (q = −1.2%,−1%), but show mean errors close to zero for the smaller
thresholds (q = −0.8%,−0.6%). The SST- and ST- type models tend to
overestimate risk for larger threshold losses, and to underestimate for small
thresholds. By the mean absolute errors MAEj, the AST models are uni-
formly and significantly better than the SST and ST models; the full AST
specification is the best choice in each case.

Table 3: Predictive performance for expected shortfall risk7

q -1.2% -1% -0.8% -0.6%
j = 1 ME1,MAE1 ME1,MAE1 ME1,MAE1 ME1,MAE1

AST -.0869, .3673 -.0466,.3785 -.0233,.3675 .0069, .3595
AST, α=0.5 -.0835, .3766 -.0476,.3851 -.0279,.3720 -.0006,.3612

SST -.0464, .3949 -.0177,.4006 -.0041,.3823 .0178, .3690
ST -.0150, .3933 .0119, .3997 .0229, .3805 .0422, .3671

j = 5 ME5,MAE5 ME5,MAE5 ME5,MAE5 ME5,MAE5

AST -.0798, .3623 -.0394,.3696 -.0215,.3564 .0047, .3494
AST, α=0.5 -.0760, .3717 -.0402,.3761 -.0262,.3604 -.0030,.3511

SST -.0376, .3905 -.0091,.3913 .-0014,.3707 .0163, .3584
ST -.0056, .3896 .0211,.3912 .0264,.3688 .0416, .3561

For each of the six individual companies, the best-performing model in 1-
step and 5-step forecasts is recorded in Table 4 (the results are shown as the

7Note: The entries are the mean errors ME j (q) ≡ ÊS
M

j (q)− ÊS j (q) and the
mean absolute errors MAE j (q) defined in (18), multiplied by 100, for the threshold
losses (negative returns) q = −1.2%,−1%,−0.8%,−0.6% and j = 1, 5.
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1% threshold, but give the same best-performing model at each of the other
thresholds examined as well). The general AST gives the best performance
in four of six cases, whereas the plain Student-t performs best in two of six.

Thus both by measures of fit and by forecasting performance for this
important measure of downside risk, the AST class of distributions appears
to offer the potential to provide useful improvements in model performance.

5 Concluding remarks

Useful measures of downside risk must reflect the potential for extreme out-
comes, but measuring and forecasting such risk for financial assets is challeng-
ing because of the asymmetry and heavy-tailedness of return distributions.
Nonetheless, a great deal of progress has recently been made in treating these
features more realistically, with attendant improvements in forecasting power
for downside risk measures.

The present paper has attempted further progress on this research pro-
gram. Using an asymmetric Student-t distribution with separate parameters
to control skewness and the thickness of each tail, we have greater flexibility
to use information in a large sample of data, and in particular to avoid con-
straining the left and right tails to have the same thickness. In doing so we
can obtain better estimates of the thickness of the left tail, with attendant
potential improvements in forecasting power for risk of loss, measured here
by the expected shortfall.

This potential seems to be realizable on available samples of financial
return data. Nonlinear, asymmetric GARCH models in which standardized
innovations are modeled as arising from the generalized asymmetric Student-
t distribution often, though not always, show improvements in both fit and
forecasting power relative to those with more restricted specifications of the
distribution of standardized innovations. Whether these improvements would
also be visible in asset return series where asymmetry seems to be less im-
portant, such as some exchange rate series, remains to be seen.

12



References

[1] Aas, K. and Haff, I.H. (2006). The generalized hyperbolic skew Student’s
t-distribution. Journal of Financial Econometrics, 4(2), 275-309.

[2] Alberg, D., H. Shalit and R. Yosef (2008). Estimating stock market
volatility using asymmetric GARCH models. Applied Financial Eco-
nomics 18, 1201-1208.

[3] Andersen, T.G., T. Bollerslev, P. F. Christoffersen and F. X. Diebold
(2005). Volatility and correlation forecasting, in: Handbook of Economic
Forecasting, edited by Graham Elliott, Clive W.J. Granger, and Allan
Timmermann. Amsterdam: North Holland.

[4] Anderson, T. and Darling, D. (1952). Asymptotic theory of certain
“goodness of fit” criteria based on stochastic process. The Annals of
Mathematical Statistics 23, 193-212.

[5] Azzalini, A. and A. Capitanio (2003). Distributions generated by pertur-
bation of symmetry with emphasis on a multivariate skew t distribution.
Journal of the Royal Statistical Society B 65, 367-389.

[6] Bauwens, L. and Laurent, S. (2002). A new class of multivariate skew
densities, with application to GARCH models. Journal of Business and
Economic Statistics.

[7] Bollerslev, T. (1986) Generalized autoregressive conditional hetero-
skedasticity. Journal of Econometrics 31, 307-327.

[8] Bollerslev, T. (1987). A conditional heteroskedastic time series model
for speculative prices and rates of return. Review of Economics and
Statistics 69, 542-547.

[9] Bollerslev, T., R.Y. Chou and K.F. Kroner (1992). ARCH modeling in
finance: A selective review of the theory and empirical evidence. Journal
of Econometrics 52, 5-59.

[10] Branco, M.D. and Dey, D.K. (2001). A general class of multivariate
skew-elliptical distributions. Journal of Multivariate Analysis 79, 99-
113.

13



[11] Engle, R.F. (1982) Autoregressive conditional heteroskedasticity with
estimates of the variance of U.K. inflation. Econometrica 50, 987-1008.

[12] Engle, R.F. and V.K. Ng (1993). Measuring and testing the impact of
news on volatility. Journal of Finance 48, 1749-1778.

[13] Fernandez, C. and Steel, M.F.J. (1998). On Bayesian modeling of fat
tails and skewness, Journal of the American Statistical Association, 93,
359-371.

[14] Hansen, B. E. (1994). Autoregressive conditional density estimation.
International Economic Review, 35 (3), 705-730.

[15] Hurvich, C. and Tsai, C. (1989). Regression and time series model se-
lection in small samples. Biometrika 76, 297-307.

[16] Jones, M.C. and Faddy, M.J. (2003). A skew extension of the t distribu-
tion, with applications. Journal of the Royal Statistical Society, Series
B, 65, 159-174.

[17] Mittnik, S. and Paolella, M. S. (2003). Prediction of financial downside-
risk with heavy-tailed conditional distributions. Handbook of Heavy
Tailed Distributions in Finance, edited by S. T. Rachev.

[18] Sahu, S.K., D.K. Dey and M.D. Branco (2003). A new class of multivari-
ate skew distributions with applications to Bayesian regression models.
The Canadian Journal of Statistics 31, 129-150.

[19] Theodossiou, P. (1998). Financial data and the skewed generalized t
Distribution. Management Science, 44 (12-1), 1650-1661.

[20] Zhu, D. and J.W. Galbraith (2009) A generalized asymmetric Student-t
distribution with application to financial econometrics. Under revision.

14



Table 4: Preferred model by various criteria

Data series AICC SBC AD MAE
−1%,j=1

MAE
−1%,j=5

S&P 500 composite B A A A A

Adobe Systems A A A A A
Bank of America A A A D D
Johnson&Johnson A/C A C A A

JP Morgan A/C A A A A
Merck A A A D D

Starbucks A C A A A

Model labels:

A: General AST errors
B: AST errors with α = 0.5
C: skewed Student-t (SST) errors
D: standard Student-t (ST) errors
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Table 5: List of data samples

Company or index beginning date end date no. obs.

S&P 500 composite 1990.01.02 2008.12.31 4791

Adobe Systems 1986.08.14 2008.12.31 5646
Bank of America 1982.03.19 2008.12.31 6760
Johnson&Johnson 1961.01.03 2008.12.31 12082

JP Morgan 1969.03.06 2008.12.31 10052
Merck 1949.05.04 2008.12.31 15950

Starbucks 1992.06.29 2008.12.31 4161
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Figure 1
AST densities for various parameter values

µ = 0, σ = 1

α = 0.3, υ1 = 2 α = 0.3, υ2 = 2

α = 0.5, υ1 = 2 α = 0.5, υ2 = 2

α = 0.7, υ1 = 2 α = 0.7, υ2 = 2
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