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1 Introduction

Most recent models of the term structure of interest rates are formulated in an arbitrage-free

framework, whereby bond yields are affine functions of a number of observed and unobserved

state variables that capture the sources of uncertainty in the economy. When only three latent

factors are specified, the traditional interpretation following Litterman and Scheinkman (1991)

links them to the level, slope, and curvature of the yield curve.2 Recently, observable macroeco-

nomic variables have been added to the latent factors to try to understand the channels through

which the economy influences the term structure, and not simply describe or forecast the move-

ments of the term structure. Ang and Piazzesi (2003), Ang, Dong, and Piazzesi (2004), and

Ang, Piazzesi, and Wei (2006) introduce measures of inflation and real activity as macroeco-

nomic factors. The joint dynamics of these macro factors and the latent factors are captured by

vector-autoregression (VAR) models.3

In these models based only on the absence of arbitrage, risk premiums for the various sources

of uncertainty are obtained by specifying time-varying prices of risk that transform the risk-

factor volatilities into premiums. The prices of risk, however, are estimated directly from the

data without accounting for the fact that investors’ preferences and technology should impose

some constraints between these prices.

Our first contribution is to build a flexible equilibrium term structure model that accounts for

the fact that the preferences of the representative agent will determine consistent risk premiums

for all the risk factors that affect bonds. In terms of preferences, the model has two key features.

First, the subjective discount factor is time-varying. Preferences with time-varying rates of time

preference were introduced by Uzawa (1968) and have been extended by Epstein (1983, 1987).

In those specifications, the subjective discount factor is a function of consumption so that the

marginal utility of consumption in a given period can vary with consumption in other periods.

Here we follow Obstfeld (1990) and link the subjective discount factor to the short-term rate of

interest. A second key feature is a recursive utility structure, where the coefficient of relative

2Dai and Singleton (2003) and Piazzesi (2005) provide thorough surveys of this class of models.
3More structural models have also been proposed to explore the dynamic interaction between the macroecon-

omy and the term structure. See in particular Hördahl, Tristani, and Vestin (2006), Rudebusch and Wu (2004),

and Bekaert, Cho, and Moreno (2003). These models combine the affine arbitrage-free dynamics for yields with a

new Keynesian macroeconomic model, which typically consists of a monetary policy reaction function, an output

equation, and an inflation equation. Diebold, Rudebusch, and Aruoba (2006) propose a dynamic Nelson-Siegel

empirical model of the term structure, complemented by a VAR model for real activity, inflation, and a monetary

policy instrument.
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risk aversion (CRRA) is disentangled from the elasticity of intertemporal substitution (EIS).

We show that these two ingredients are necessary to explain bond risk premiums.4

In order to make our model comparable with arbitrage-free models and with that of Ang,

Piazzesi, and Wei (2006) in particular, we use a VAR description of macroeconomic dynamics

and we link them to those of the term structure so that nominal bond yields are affine functions

of observable state variables. We specify a first-order VAR comprising the short-term rate of

interest, the five-year term spread, a measure of the return on the equity market portfolio, the

rate of inflation, and the rate of consumption growth. A distinct addition to the VAR model

used in Ang, Piazzesi and Wei is the return on the equity market portfolio, which links the bond

and equity markets. We are able to assess the importance of this link by comparing with a

restricted expected-utility version of our model, in which the equity market variable disappears

from the stochastic discount factor (SDF) (or pricing kernel or, in equilibrium, the intertemporal

marginal rate of substitution).

A second contribution of the paper is to estimate the preference parameters and other crucial

parameters for risk premiums. For their arbitrage-free model, Ang, Piazzesi, and Wei propose a

sequential estimation strategy. They estimate the VAR parameters first and then they minimize

the least-square distance between the observed market yields and the model-implied ones to

recover the price-of-risk parameters. We follow a similar strategy and use our equilibrium

model-implied yields to recover the preference parameters. We find that the estimated preference

parameters are economically plausible: in the non-expected utility model, the CRRA is around

6 and the EIS is around 0.36. This adds new evidence coming from bond market data to

the current debate in the long-run risk literature on whether the EIS parameter in recursive

preferences is above or below one in value.5

By using the same VAR specification of the macroeconomic dynamics for both the equilib-

rium model and a benchmark arbitrage-free model, we are able to assess the relative contri-

butions of the different modeling strategies for explaining stylized facts about risk premiums.

Statistical tests of the expectations hypothesis conclude that bond risk premiums vary with the

shape of the yield curve and that excess bond returns are indeed predictable. In particular,

4Gregory and Voss (1991) show that recursive preferences alone do not offer a solution to the bond premium

puzzle, put forward by Backus, Gregory, and Zin (1989) and Donaldson, Johnsen, and Mehra (1990), which is that

the representative agent model with power utility can account for the average risk premiums in holding-period

bond returns and forward rates only with implausibly large values of the CRRA.
5Bansal and Yaron (2004) propose a long-run risk model to link economic uncertainty (consumption volatility)

to asset prices. They reproduce some stylized facts only for values of the EIS greater than one.
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Cochrane and Piazzesi (2005) run predictive regressions of one-year excess returns on forward

rates and find that the forecasts are highly significant. Cochrane and Piazzesi find a robust tent-

shaped pattern of slope coefficients for all maturities, with regression R2 around 35%. A major

finding of our paper is that only the unrestricted version of our recursive utility equilibrium

model can account for the violations of the expectations hypothesis documented by Cochrane

and Piazzesi.6 The restricted expected-utility model and the reduced-form no-arbitrage model

cannot account for the tent-shaped pattern and magnitude of coefficients from such predictive

regressions of excess bond returns on forward rates. The non-expected utility model produces

mean slope coefficients with the correct pattern across maturities and the actual coefficients

found in the market data are also well covered by the respective confidence intervals. Further,

the hump-shaped pattern in the term structure of unconditional volatilities of yields and yield

changes is apparent in the recursive utility model but not in the restricted expected-utility

model nor in the reduced-form no-arbitrage model. These findings support the hypothesis that

equilibrium restrictions on risk-factor prices are essential to limit the variability of the SDF in

order to reproduce the dynamics of bond risk premiums.

State-dependent preferences are commonly used in asset pricing. In Campbell and Cochrane

(1999), risk aversion is varying over time with consumption surplus—a business cycle variable

that measures the difference between current consumption and a benchmark consumption formed

by habit. Recently, Campbell, Sunderam, and Viceira (2007) build a term structure model

with time-varying risk aversion to characterize the changing correlation between inflation and

real variables. Closer to our model, Melino and Yang (2003) generalize the standard recursive

utility framework by allowing the representative agent to display state-dependent preferences

and they show that such preferences can account for moments on equity and the risk-free rate.

In order to explain the term structure of interest rates, however, we need only to allow for a

time-varying subjective discount factor; CRRA and EIS remain time-invariant and can thus be

deemed structural in our framework. The fact that we link the subjective discount factor to the

short-term rate of interest as in Obstfeld (1990) is motivated by the central role played by the

6This violation of the expectations hypothesis extends the classic regressions of Fama and Bliss (1987) and

Campbell and Shiller (1991). Fama and Bliss found that the spread between the n-year forward rate and the

one-year yield predicts the one-year excess return of the n-year bond, with R2 around 18%. Campbell and Shiller

found similar results forecasting yield changes with yield spreads. Cochrane and Piazzesi’s findings substantially

strengthen that evidence against the expectations hypothesis. Most important, they show that the same linear

combination of forward rates predicts bond returns at all maturities, while Fama and Bliss and Campbell and

Shiller relate each bond’s expected excess return to a different forward spread or yield spread.
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short rate in the determination of bond prices. Indeed, most models in the bond pricing literature

find a way to introduce the short-term rate in the SDF, including the popular bond pricing

models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985).7 In Campbell and Cochrane

(1999), the subjective discount factor is chosen to match the risk-free rate with the average

real return on Treasury bills. In the extension of their model by Wachter (2006) to explain the

term structure of interest rates, the risk-free rate is made a linear function of the surplus and is

therefore time-varying. That model could be reinterpreted as a habit model with a time-varying

discount factor equal to a deterministic function the risk-free rate.

The recent paper by Piazzesi and Schneider (2006) is certainly the closest to ours. They also

derive equilibrium yield curves under recursive preferences, but their approach differs in several

respects. First, they express the SDF in terms of news about future consumption instead of a

proxy return for the market portfolio as we do. They specify an exogenous state-space system

for consumption growth and inflation and set values for the preference parameters in order

to infer the equilibrium yields. Here we estimate the parameters of a VAR system including

consumption growth and inflation and the preference parameters that rationalize the observed

yields. In this sense, we follow more closely the no-arbitrage approach (e.g. Ang, Piazzesi, and

Wei 2006), where prices of risk that rationalize the observed yields are extracted.

Several authors have shown the limitations of the traditional consumption-based capital

asset pricing model (CCAPM) with expected utility in representing the historical co-movements

of consumption and returns on bonds. Campbell (1986a) explores the relation between bond

risk premiums and the time-series properties of consumption in a similar model. He shows

that positive serial correlation in consumption growth imparts a downward slope to the yield

curve. Boudoukh (1993) considers a model with power utility, but where consumption growth

and inflation are determined by a heteroskedastic VAR. Boudoukh finds that heteroskedasticity

in consumption growth and inflation is not strong enough to generate the predictability of

excess bond returns found in the data. In Piazzesi (2005), affine general-equilibrium models are

specified with preference shocks that are related to state variables, as in Campbell (1986b) and

Bekaert and Grenadier (2003).

Wachter (2006) also proposes a consumption-based model of the term structure of interest

rates, where nominal bonds depend on past consumption growth through habit, and on ex-

pected inflation. As already mentioned, this model is essentially the same as the habit model

7Those models are special cases of a larger class of affine term structure models (Duffie and Kan 1996 and

Dai and Singleton 2000), in which the SDF is a function of multiple factors, in addition to the short rate.
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of Campbell and Cochrane (1999), but the sensitivity function of the surplus consumption to

innovations in consumption is chosen so as to make the risk-free rate a linear function of the

deviations of the surplus consumption from its mean. Moreover, Wachter calibrates her model

so as to make the nominal risk-free rate in the model equal to the yield on a three-month bond

at the mean value of surplus consumption.

The rest of this paper is organized as follows. Section 2 describes the equilibrium model with

recursive utility preferences that is used to price bonds. We also specify the dynamics of the

macroeconomic variables that influence the yields. Section 3 is dedicated to model estimation

and evaluation. We specify the benchmark no-arbitrage model, the data sources, and the econo-

metric methodology used to estimate the parameters and ultimately to compute the yields. We

report the pricing errors for the various specifications as well as variance decompositions and

out-of-sample forecasts. Section 4 presents the empirical implications for the term structure of

volatilities and the analysis of risk premiums. Section 5 offers some concluding remarks.

2 Equilibrium Model

The recursive utility model suggested by Epstein and Zin (1989) and Weil (1989) allows for

a constant Arrow-Pratt CRRA that can differ from the reciprocal of the EIS. In so doing,

that framework provides a partial separation of attitudes toward risk from preferences over

deterministic consumption paths. Melino and Yang (2003) generalize the standard recursive

utility framework by allowing the representative agent to display state-dependent preferences

and show that such preferences can account for moments on equity and the risk-free rate. In

order to explain the term structure of interest rates, however, we need only to allow for a variable

rate of time preference; CRRA and EIS remain time-invariant and can thus be deemed structural

in our framework. As in the standard framework, we consider an infinitely lived representative

agent who receives utility from the consumption of a single good. In any period t, current

consumption is deterministic but future consumption is uncertain. The agent’s lifetime utility

is characterized by

Ut = (Cρ
t + βtμ

ρ
t )

1
ρ , (1)

where 0 < βt is the time-varying subjective discount factor and μt = Et[Ũt+1] is a certainty

equivalent of random future utility, Ũt+1, given the information available to the agent at time

t. The way the agent forms the certainty equivalent of random future utility is based on risk

preferences, which are assumed to be isoelastic; i.e., μα
t = Et[Ũ

α
t+1]. Melino and Yang show that,
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as in the standard recursive utility case, α ≤ 1 can be interpreted as a relative risk aversion

parameter with the degree of risk aversion increasing as α falls (1 − α is the CRRA). The

parameter ρ can be interpreted as reflecting substitution, since 1/(1 − ρ) is the EIS.

The SDF used by the agent to discount future payoffs to determine current asset prices is

expressed as

mt+1 = βγ
t

(
Ct+1

Ct

)γ(ρ−1)

(Rt+1)
γ−1 , (2)

where Rt+1 is the one-period gross rate of return on the market portfolio and γ = α/ρ. Equation

(2) shows that the SDF is a geometric weighted average of the rate of growth of consumption

and the rate of return on the market portfolio. Market prices can then be expressed by the

expected-value relation

pt = Et[mt+1gt+1], (3)

where pt is the asset price and gt+1 is the asset’s future payoff. Note that the quantity in (2) is

a strictly positive random variable that must satisfy (3).

The basic asset pricing equation can also be written as 1 = Et[mt+1rt+1], where rt+1 =

gt+1/pt defines gross returns. Gross returns can be defined either in nominal or real terms;

correspondingly, the SDF must then be expressed in nominal or real terms. In nominal terms,

the SDF in (2) becomes

m$
t+1 = βγ

t

(
Ct+1

Ct

)γ(ρ−1)

(Rt+1)
γ−1

(
Pt+1

Pt

)−1

, (4)

where Pt+1/Pt is the gross rate of inflation between periods t and t + 1; Pt is the nominal price

index at time t. Let rt = log Rt represent the logarithm of the return on the market portfolio,

πt = log Pt/Pt−1 the rate of inflation, and ct = log Ct/Ct−1 the rate of consumption growth.

Preferences with time-varying rates of time preference were introduced by Uzawa (1968), and

have been extended by Epstein (1983, 1987). Those preferences specify the subjective discount

factor as a function of consumption, so that the marginal utility of consumption in a given

period can vary with consumption in other periods. This type of preferences has been applied to

problems in international trade by Calvo and Findlay (1978), Obstfeld (1981), Mendoza (1991),

Uribe (1997), and Schmitt-Grohé (1998). A further study includes Bergman (1985), where

the implications of such preferences for the CAPM are examined. Obstfeld (1990) presents a

general class of recursive utility functions, where the rate of time preference is a function of the

interest rate. In our nominal model, the subjective discount factor is linked to an exogenously
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determined risk-free rate of interest via the key restriction

γ log βt = −y
(1)
t , (5)

where y
(1)
t is the log yield on a one-quarter bond; i.e., one period is a quarter in our discrete-time

yield-curve model. Note that (5) implies that βγ
t takes values between zero and one, since it

equals the price of the one-quarter bond. As in Obstfeld (1990), our model with a variable rate

of time preference implies that consumption and asset prices depend on a short-term rate of

interest. The restriction in (5) might give the impression that the model will admit arbitrage

opportunities. We will see that the SDF in (4) with (5) coupled with an affine specification

ensures that the resulting bond prices remain arbitrage-free.

Further, if not more important, the restriction in (5) is motivated by the central role played

by the short-term rate of interest in the determination of bond prices. Indeed, the short rate is a

fundamental building block for yields of other maturities, which are just risk-adjusted averages

of expected future short rates. Typically, bond pricing models are formulated as affine functions

of a number of state variables that capture the uncertainty present in the economy. When

three latent factors are specified, they are often interpreted as the level, slope, and curvature

of the yield curve, following Litterman and Scheinkman (1991). At a quarterly frequency, the

first principal component of yields accounts for 97.2% of the variation of yields and that first

principal component has a −95.6% correlation with the short rate (Ang, Piazzesi, and Wei

2006). Obviously, a model misspecification of this quantity leads to considerable pricing errors.

Therefore most models in the bond pricing literature find a way to introduce the short-term

rate in the SDF. Two of the most popular bond pricing models are those by Vasicek (1977)

and Cox, Ingersoll, and Ross (1985) (CIR). Each of these models has a single factor, typically

associated with the short rate. For example, Bansal and Zhou (2002) introduce the short rate by

assuming that the log return on the asset that delivers the consumption stream (in a standard

consumption-based asset pricing model) follows a CIR process and by using the fact that the

conditional mean of the SDF is equal to the price of the risk-free, one-period discount bond.

The Vasicek and CIR models are special cases of a larger class of affine term structure models

(Duffie and Kan 1996 and Dai and Singleton 2000). The SDF in these models is a function of

multiple factors, in addition to the short rate. Ang, Piazzesi, and Wei (2006) use the short rate

as a proxy for the latent level factor of the yield curve, which is then used with other observable

factors to price bonds at longer maturities. Bekaert and Grenadier (2003) use moments of the

nominal short rate to calibrate the moments of the latent level factor in various arbitrage-free

and equilibrium models, while Wachter (2006) extends the external habit model of Campbell and
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Cochrane (1999) by making the interest rate a function of surplus consumption. The average

level of the short interest rate in that model is set equal to its sample counterpart.

Following Ang, Piazzesi, and Wei (2006), our model is based entirely on observable factors,

which we collect in a state vector Xt. Both macroeconomic variables and yield curve factors

are included in the state vector. Ang, Piazzesi, and Wei argue that two yield curve factors are

sufficient to model the dynamics of yields at the quarterly frequency. Following those authors,

we use the short rate, y
(1)
t , to proxy for the level factor of the yield curve and the five-year term

spread, y
(20)
t − y

(1)
t , to proxy for the slope factor of the yield curve. The term spread has a

−86.5% correlation with the second principal component of yields. Adding the second principal

component brings the percentage of yield-curve variation to 99.7%. Although the term structure

factors can explain the yield curve, that does not necessarily mean that they can explain risk

premiums. Indeed, we will see that the macroeconomic factors and the restricted way in which

they enter the SDF play a key role in explaining violations of the expectations hypothesis.

The macroeconomic factors are collected along with two term structure factors in the state

vector so that Xt = (y
(1)
t , y

(20)
t − y

(1)
t , rt, πt, ct)

′. As in Ang, Piazzesi, and Wei (2006), the vector

of state variables follows a first-order VAR process:

Xt = μ + ΦXt−1 + Σεt, (6)

where the errors are normally distributed with mean zero and E[εtε
′
t] = ΣΣ′. Despite the appar-

ent simplicity of (6), we will see that the resulting bond pricing model fits the data extremely

well. The logarithm of the nominal SDF can then be written as

log m$
t+1 = −y

(1)
t + JXt+1, (7)

where J = (0, 0, γ − 1,−1, α− γ). We will see that an affine structure ensures the identification

of the corresponding equations in the state VAR process, even though the vector J contains

zeros.

The time-t price of a nominal bond that pays one dollar at time t + n is determined by the

recursive relation

P (t, n) = Et

[
m$

t+1 × P (t + 1, n − 1)
]
,

with the terminal condition P (t + n, 0) = 1. Note that when n = 1, the SDF in (7) will satisfy

the usual relationship

rf
t = 1/Et[m

$
t+1],
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where rf
t is the gross risk-free rate of interest. Bond prices are parameterized as exponential

linear functions of the state vector so that

P (t, n) = exp (A(n) + B(n)′ × Xt) , (8)

for a scalar A(n) and a 5×1 vector B(n) of coefficients that are functions of the time-to-maturity

n. Solutions for those coefficients are based on the assumption that m$
t+1 × P (t + 1, n − 1) is

conditionally log-normal and the associated moments:

Et

[
log m$

t+1

]
= −y

(1)
t + J(μ + ΦXt),

Et [log P (t + 1, n − 1)] = A(n − 1) + B(n − 1)′ × (μ + ΦXt),

Vart

[
log m$

t+1

]
= JΣΣ′J ′,

Vart [log P (t + 1, n − 1)] = B(n − 1)′ × ΣΣ′ × B(n − 1),

Covt

[
log m$

t+1, log P (t + 1, n − 1)
]

= B(n − 1)′ × ΣΣ′J ′.

More precisely, bond prices are given by (8) with coefficients A(n) and B(n)′ determined by the

backward recursions

A(n + 1) = A(n) + [J + B(n)′]μ + 1
2
[J + B(n)′]ΣΣ′[J ′ + B(n)],

B(n + 1)′ = [J + B(n)′]Φ − e1,
(9)

where e1 = (1, 0, 0, 0, 0). The initial conditions are A(1) = 0 and B(1)′ = −e1. The difference

equations in (9) that determine A(n) and B(n)′ are derived by induction, exactly as in Ang and

Piazzesi (2003).

The inclusion of the two term structure factors y
(1)
t and y

(20)
t −y

(1)
t in the state vector implies

that the model prices the one- and twenty-quarter bonds without error. The first set of these

internal consistency constraints is given by the initial conditions for the recursive definitions of

the coefficients A(n) and B(n). The second set of constraints is

A(20) = 0,

B(20)′ = −20(e1 + e2),
(10)

where ei is a 5 × 1 vector of zeros with a 1 in the ith element. These constraints ensure that

the twenty-quarter yield is the sum of the first two factors in Xt. The other yields are then

functions of y
(1)
t and y

(20)
t − y

(1)
t and the other factors included in Xt. The yields not included

as factors are thus subject to a sampling error.
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The second equation of the backward recursions in (9) features the product JΦ, which might

give the impression that the short rate and the term spread cannot be identified via bond prices.

The initial conditions, however, ensure the identification of the short-rate equation in the state

VAR process. To see that the term spread is also identified, note that when the persistence

matrix Φ admits an inverse, the factor loadings can be written as a forward recursion:

B(n)′ = [B(n + 1)′ + e1] Φ
−1 − J, (11)

with the terminal conditions in (10). This recursion is mathematically equivalent to the one in

(9) and makes clear that the term-spread equation is statistically identified.

The bond pricing equation in (8), along with the coefficients in (9), provides a characteri-

zation of the entire yield curve. In particular, it describes the joint dynamics of bond yields of

various maturities and the vector of state variables. The model-implied yield on a continuously

compounded n-period zero-coupon bond, Y (t, n) = − log P (t, n)/n, is an affine function of the

state vector:

Y (t, n) = −A(n)

n
− B(n)′

n
Xt. (12)

From the bond pricing equation, the time-t model-implied forward rate which applies between

times t + n and t + n + s (s ≥ 1), F (t, n, s) = (log P (t, n)− log P (t, n + s))/s, can be computed

as

F (t, n, s) = − [A(n + s) − A(n)]

s
− [B(n + s)′ − B(n)′]

s
Xt, (13)

and the short rate expected to prevail at time t + n is given by

Et[y
(1)
t+n] = e1

[
n∑

i=1

Φn−iμ + ΦnXt

]
, (14)

where Φ0 is set equal to the 5 × 5 identity matrix.

The expectations hypothesis is a restriction on the risk premium in the relationship

F (t, n, 1) = Et[y
(1)
t+n] + RP (t, n),

where RP (t, n) is the time-t risk premium. From the difference equation in (9), we have B(n +

1)′ − B(n)′ = (J − e1)Φ
n. So the model-implied risk premium is

RP (t, n) = −JΦnXt + constant. (15)

The expression in (15) shows that in addition to the preference parameters in J , the persistence

matrix Φ also plays a crucial role for the risk premiums. Indeed when Φ = 0, there is no
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systematic risk, the risk premium is constant, and the expectations hypothesis holds. In contrast,

the risk premium is time varying whenever Φ �= 0.

With the restriction α = ρ, the model reduces to an expected utility model albeit except

for the time-varying subjective discount factor. The expected utility version implies a separable

time-additive preference structure, since the short-term rate of interest is exogenous; i.e., the

subjective discount factor does not depend on consumption choices. In that case, the CRRA is

the reciprocal of the EIS and the return on the market portfolio plays no contemporaneous role

in the SDF.

The appearance of the market return as a state variable in the non-expected utility specifica-

tion implies that the model should also consistently price the market portfolio. This additional

constraint imposes a very tight link between bond yields and equity returns. The model then

fails to fit the data with any meaningful parameter values owing to the much greater time-varying

volatility of equities relative to bonds; i.e, the model does not offer a solution to both the equity

and bond premium puzzles, simultaneously. With this caveat in mind, the next section presents

an empirical assessment of the equilibrium model and the role played by the macroeconomic

factors in explaining bond risk premiums.

3 Model Estimation and Evaluation

3.1 Benchmark model

The described equilibrium model links the dynamics of the term structure of interest rates to

macroeconomic variables. Ang and Piazzesi (2003) also establish such a link through a reduced-

form model of the term structure. For comparison, their approach is used here to derive a

reduced-form bond pricing equation given the same specification of state variables used for the

equilibrium-based model.

The approach assumes that the nominal SDF follows a conditionally log-normal process of

the form

log m$
t+1 = −y

(1)
t − 1

2
λ′

tλt − λ′
tεt+1, (16)

where λt are time-varying market prices of risk. The vector λt is parametrized as an affine

process:

λt = λ0 + λ1Xt, (17)

so that λ0 is a 5 × 1 vector and λ1 is a 5 × 5 matrix. Equations (16) and (17) relate shocks in
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the state VAR process to the SDF and therefore determine how those factor shocks affect all

yields. The implied no-arbitrage bond yields are given by

Y na(t, n) = −Ana(n)

n
− Bna(n)′

n
Xt, (18)

where the coefficients Ana(n) and Bna(n)′ are defined recursively by

Ana(n + 1) = Ana(n) + Bna(n)′ × (μ − Σλ0) + 1
2
Bna(n)′ × ΣΣ′ × Bna(n),

Bna(n + 1)′ = Bna(n)′ × (Φ − Σλ1) − e1,
(19)

with e1 = (1, 0, 0, 0, 0). As before, we have restrictions of the form Ana(1) = 0, Bna(1)′ = −e1

and Ana(20) = 0, Bna(20)′ = −20(e1 + e2). See Ang and Piazzesi (2003) and Ang, Piazzesi, and

Wei (2006) for additional details.

The definition of the SDF in (16) makes clear the role of λ0 and λ1 for risk premiums in

the reduced-form model. When λ0 = 0 and λ1 = 0, there are no risk premiums and a local

version of the pure expectations hypothesis holds. In this case, the price of an n-period bond is

P na(t, n) = Et[exp(−∑n
i=1 y

(1)
t+i)], so that apart from some Jensen-inequality terms, long-term

rates are simply the expected value of average future short-term rates. When λ1 = 0, market

prices of risk do not depend on Yt and the risk premium is constant.

3.2 Data description

The macroeconomic fundamentals VAR model is estimated using data on U.S. nominal interest

rates, equities, inflation, and real consumption. Although the raw data are available at the

monthly frequency, we follow Campbell and Viceira (2001) and Wachter (2006) and construct a

quarterly data set in order to reduce the influence of higher-frequency noise in inflation and short-

term movements in interest rates. As Wachter states, higher-frequency interest-rate fluctuations

would seem difficult to explain using an equilibrium model with macroeconomic variables.8

Real aggregate consumption is based on personal consumption expenditures on nondurables

and services obtained from the Bureau of Economic Analysis. Per capita consumption is obtained

by dividing the real aggregate consumption by the total population. The level of the market

portfolio is proxied using a value-weighted index of stocks, including dividends, traded on the

NYSE, AMEX, and NASDAQ markets obtained from the Center for Research in Security Prices

(CRSP). For inflation, we use data on the Consumer Price Index (CPI) obtained from the Federal

8Another important consideration is the computational cost involved. Indeed, the depth of recursions when

computing (9) and (19) with monthly data prohibits a thorough exploration of the parameter space.

12



Reserve Bank of St. Louis. The level data on real per capita consumption, the stock index, and

the CPI were aggregated up to the quarterly frequency by averaging the monthly observations.

The return on the market portfolio, the rate of inflation, and the growth rate of consumption

were then defined as the changes in the (log) values of the corresponding level data. The bond

data consist of a set of monthly zero-coupon yields obtained from CRSP. These monthly yields

were averaged to obtain quarterly yields on bonds with maturities of 1, 2, 4, 8, 12, 16, and 20

quarters. These data definitions ensure that the yields incorporate information about the rates

of inflation, consumption growth, and market return throughout the quarter. The quarterly

data set has 182 observations from 1959Q3 to 2004Q4.

Table 1 provides summary statistics of the yield data at the quarterly frequency. As usual, the

yield curve slopes upward on average. Further, the standard deviation, skewness, and kurtosis

tend to be higher for shorter bond maturities.

3.3 Estimation methodology

Following Ang, Piazzesi, and Wei (2006), we adopt a consistent two-step procedure to estimate

the model parameters. For the reduced-form model, we estimate in a first step the VAR pa-

rameters μ, Φ, and Σ by least squares. In the second step, we estimate the parameters that

determine the market prices of risk (λ0 and λ1) given the estimates of the VAR parameters from

the first step.9 This is done by solving the non-linear least-squares problem:

min
{λ0,λ1}

∑
T

∑
N

(y
(n)
t − Y na(t, n))2, (20)

where y
(n)
t is the market yield of an n-period bond at time t and Y na(t, n) is the corresponding

model-implied yield; the first summation is over available time observations and the second

summation is over the yields used to estimate the model. Minimization was done with the

Nelder-Mead simplex algorithm, and once the optimum was found, the covariance matrix was

estimated using numerical derivatives of the non-linear regression function with respect to the

vector of parameters.10

9Of course, this step-by-step estimation methodology does not deliver the most statistically efficient estimates.

On the other hand, its computational simplicity is a considerable advantage, especially when the models need to

be updated on a regular basis.
10As a further check, we also computed bootstrap standard errors by recursively generating data according

to the VAR specification, then generating yield data from the bond pricing formulas, and finally estimating

the model parameters using the simulated data. A bootstrap distribution was generated from 1000 replications
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A similar two-step procedure is used to estimate the parameters of the equilibrium-based

model, thereby ensuring a meaningful comparison across specifications. As the expression in

(15) shows, the two preference parameters (γ and α) and the 5× 5 matrix Φ play a crucial role

for the equilibrium risk premiums. To emphasize this point, note that if the data were actually

generated according to the local expectations hypothesis, we would expect to find statistically

insignificant values of λ0 and λ1 in the reduced-form model. On the other hand, we would

expect to find insignificant values of Φ if the equilibrium-based model was taken to the yields

data under the expectations hypothesis. For this reason, estimation of the equilibrium-based

model takes only the least-squares estimate of μ and Σ as given. The second step solves the

non-linear least-squares problem with respect to the CRRA= 1− α, the EIS= 1/(1− ρ), where

ρ = α/γ, and the persistence matrix Φ, subject to the constraints in (10). So as in the case

of the reduced-form model, we let the bond market data tell us whether risk premiums in the

equilibrium model are time-varying.

The estimation of the equilibrium-based model and the reduced-form model involves about

the same number of parameters in each case. It is also important to note that the two spec-

ifications are not nested. This means that we would not expect the reduced-form model to

necessarily provide a better fit to the data.

3.4 Estimation results

Estimation results for the equilibrium model are reported in Table 2, along with 95% confidence

intervals for each parameter. The table reports results for both the non-expected utility case

and the expected utility case where the CRRA is the reciprocal of the EIS. The point estimate

for the CRRA in the unrestricted case is around 6, and is estimated quite precisely as seen

from the narrow confidence interval. This value is roughly consistent with the GMM results of

Epstein and Zin (1991), who found a low value of the CRRA close to one. Schwartz and Torous

(1999) argue that empirical tests have difficulty disentangling the EIS from the CRRA because

the data that are typically used, which includes returns on stocks and short-term bonds, do not

capture the time dimension needed to accurately measure the EIS. Schwartz and Torous explain

that the EIS deals with the willingness of investors to allocate consumption over time, and thus

term structure data can better capture this temporal effect. Schwartz and Torous find a GMM

point estimate for the CRRA of 5.65 in the recursive utility framework. These values of the

of this (numerically intensive) procedure. The bootstrap confidence intervals were similar to those reported in

Tables 2 and 4.
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CRRA around 6 fall in the range obtained by Malloy, Moskowitz, and Vissing-Jørgensen (2006)

also in the recursive utility framework, but from micro-level household consumption data. These

authors show that the CRRA implied by the cross-sectional reward for long-run consumption

risk of stockholders is around 8, and as low as 5 for the wealthiest third of stockholders with

the largest equity holdings.

Table 2 shows that the EIS is also estimated quite precisely, with a point estimate of 0.359.

That value is also consistent with the findings of Epstein and Zin (1991) who found the EIS

to be statistically less than 1. Schwartz and Torous (1999) report a point estimate of 0.226 for

the EIS. Their results corroborate the work of Hall (1988) and Campbell (1999), who conclude

that the EIS is small and positive and statistically different from zero. It is interesting to note

that, while the non-expected and expected utility cases have statistically different estimates of

the CRRA, they nonetheless have similar estimates of the EIS. Figure 1 shows the subjective

discount factor, βt, implied by the non-expected utility model. The plot corresponds to the price

of the one-quarter bond scaled by the estimated value of γ; see equation (5).

Looking at the estimates of Φ in the non-expected utility case, each of the state variables

appears statistically significant as some element. The short rate and the term spread appear

as their own significant predictors, which is not surprising given the persistent nature of those

variables. The term spread, inflation, and consumption growth appear to be significant predic-

tors of the market return in the third row of Φ. Inflation, in the fourth row, is explained by its

own lag and consumption growth. Finally, consumption growth is explained by its own lag.

As in Piazzesi and Schneider (2006), inflation brings bad news for future consumption since

inflation is negatively correlated with future consumption growth. However, the implied corre-

lation between consumption growth and lagged consumption growth is negative (-0.409) while

it is positive historically in the data (0.208; see Table 3). The interpretation of this result is

challenging. Reasons could be that the implied dynamics are for a representative investor since

substantial differences have been put forward between the consumption of stockholders and

non-stockholders.11 An intertemporal substitution effect could explain the negative consump-

tion growth autocorrelation. Evidence of such forward-looking consumption-savings decisions

by households is found in Nalewaik (2006). Using twenty years of microeconomic data from the

11Mankiw and Zeldes (1991) proposed the idea that limited participation in asset markets matters for the

relation between consumption and asset returns. They found large differences in relative risk aversion estimates

between the stockholders and the non-stockholders, implied by different consumption processes for these two

groups. Vissing-Jørgensen (2002) shows that estimates of the EIS also differ significantly between asset holders

and non-asset holders.
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Consumer Expenditure Surveys, he finds a large negative first-order autocorrelation for con-

sumption growth.12 Another reason could be a misspecification of the consumption process.

The representative investor may fear a regime with a very negative consumption growth that

translates into a negative estimate for the coefficient of lagged consumption in the consumption

growth equation because this bad regime is not accounted for in the model. Garcia, Luger, and

Renault (2003) find evidence of such regime effects in the context of an equilibrium-based option

pricing model. Interestingly, the signs and magnitudes of the coefficients in the market return

equation are similar in the implied Φ matrix in Table 2 and the matrix estimated without the

bond data in Table 3. That is also the case for the yield spread. The signs are also preserved in

the short rate equation for inflation and consumption growth.

The estimate of Φ under expected utility exhibits a very different pattern. In that case,

the only significant elements are the short rate and the term spread as their own predictors.

Lagged values of the inflation rate, the return on the market portfolio, and consumption growth

are nowhere significant. The fact that consumption makes no significant contribution provides

yet more evidence against the consumption-based asset pricing model with power utility. It

is interesting to note that the point estimates coefficients of lagged inflation and lagged con-

sumption growth in both the inflation and the consumption equations are not different in the

non-expected utility and the expected utility panels.

Table 4 reports the parameter estimates for the reduced-form model. The reported confidence

intervals reveal that many of the parameter estimates have large standard errors, as is common

in reduced-form factor models of the term structure. The market return is the only variable

that appears significant in the average market price of risk, λ0. This result is interesting since

Ang and Piazzesi (2006) find that such unconditional means are hard to pin down in small

samples owing to the persistent nature of bond yields. On the other hand, each of the state

variables plays some significant role in determining the time variation of market prices of risk.

The significance of every element in the third column of λ1 corresponding to the market return

is worth noticing.

Table 5 reports summary statistics of the in-sample absolute pricing errors (in basis points)

for the various specifications. It is immediately clear that relaxing the expected utility constraint

improves the fit of the equilibrium model. This result confirms that the market return plays a

12It is interesting to note that Otrok, Ravikumar, and Whiteman (2002) find that the autocorrelation of

annual consumption growth is -0.26 over the period 1890–1930, and Chapman (2002) finds the autocorrelation

to be -0.16 over the period 1890–1948. The consumption process used by Mehra and Prescott (1985) has an

autocorrelation of -0.14. They base their parameter values on annual data covering the period 1889–1978.
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relatively important contemporaneous role in the pricing of bonds. The unrestricted equilibrium

model fares well against the reduced-form model, as seen from the small differences in pricing

errors. The maximal pricing error in Table 5 is only about 140 basis points, which occurs under

the restricted equilibrium model with 4-quarter bonds. Despite the relative differences across

models, the pricing errors in Table 5 show that the three specifications fit very well by any

standard.

3.5 Variance decompositions

The model-implied yields in equations (12) and (18) show that the effects of each state variable

on the yield curve are determined by the factor loadings B(n) and Bna(n), respectively. Further,

those equations identify the error in forecasting yields with the error in forecasting the VAR.

Following Ang and Piazzesi (2003), the proportion of the forecast error attributable to each

state variable can be computed from a standard variance decomposition of the VAR. Tables

6–8 show the relative contributions of each state variable to the mean squared forecast errors

of bond yields, for various forecast horizons. Note that even though the market return plays no

contemporaneous role in the SDF under expected utility, it is still a predictor of the other state

variables in the VAR and hence still makes a contribution in forecasting future bond yields.

It is immediately clear upon comparing Tables 6–8 that the state variables make similar

contributions in forecasting future bond yields across the three specifications. The contribution

of the short rate decreases with both the maturity and the forecast horizon. On the other

hand, the spread’s contribution increases with the bond’s maturity, but tends to decrease with

the forecast horizon as the maturity increases. The contribution of the two yield curve factors

across maturities follows by construction. Recall that the three models are constrained to

price the shortest and the longest maturity bonds without error in-sample. The proportions

of unconditional variance accounted for by the short rate and the term spread range from

around 80% and 1.3%, for the 2-quarter yield, to about 70% and 10%, for the 16-quarter yield,

respectively.

The proportions of forecast variance explained by the market return, inflation, and consump-

tion exhibit interesting patterns. The market return’s contribution is about 2.5% across both

the bond maturity and the forecast horizon. The contribution by the rate of inflation is in-

creasing with the forecast horizon, and about constant across bond maturities. That proportion

increases from about 2% to 10% as the forecast horizon increases from 4 quarters to very long

horizons. The effect of consumption growth is also increasing in the forecast horizon, and slightly
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decreasing in bond maturity. The long-run contribution of consumption growth in forecasting

bond yields is about 7.5%. It is interesting to note that the overall proportion of unconditional

variance accounted for by the term structure factors is about 80% for all bond maturities, and

the remaining 20% is accounted for by the market return, inflation, and consumption.

3.6 Out-of-sample forecasts

Duffee (2002) shows that traditional affine term structure models produce forecasts that are

typically worse than forecasts produced by simply assuming that future yields are equal to

current yields.13 Duffee explains that the poor forecasting performance of those traditional

models is due to the fact that the implied compensation for risk is a multiple of the variance of

the state vector. This tight link makes it difficult to replicate some stylized facts of historical

excess bond returns. Duffee concludes that for the purpose of forecasting, traditional affine term

structure models are largely useless. Ang and Piazzesi (2003) remark that market prices of risk

that are affine functions of both macroeconomic and latent factors, which were not considered

by Duffee (2002), seem to improve the forecasts. Ang and Piazzesi conclude that adding macro

factors to a given number of latent factors in an affine term structure model results in better

forecasts, even outperforming the random walk model.

The equilibrium and reduced-form models, based entirely on observable factors, are compared

to the benchmark random walk model in terms of their one-quarter-ahead predictions. For each

quarter t, we estimate the VAR model and the term-structure models using data up to and

including quarter t, and then forecast the next quarter’s yield curve using the VAR’s forecasts

for period t+1. Hence, we use only information available in period t when forming the forecasts

for period t + 1. The forecasts from the benchmark random walk model are produced by

simply assuming that future yields are equal to current yields. Given that we need at least

30 observations to estimate the reduced-form model, prediction abilities are compared over the

period 1967Q1–2004Q4, resulting in 152 one-quarter-ahead forecasts.14

Table 9 reports summary statistics of the one-quarter-ahead absolute forecasts errors (in

basis points). The first panel shows the results for the benchmark random walk model. The

next two panels show the results for the non-expected and expected utility equilibrium models,

13See Egorov, Hong, and Li (2006) for related evidence.
14We also repeated the forecast comparison starting at the sample mid-point to see if there were any effects from

the choice of the initial estimation window. The results based on the resulting 91 observations were qualitatively

similar to those reported in Table 9.
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respectively. The last panel shows the results for the reduced-form model. Note that, by

construction, both versions of the equilibrium model and the reduced-form model have identical

predictive abilities for 1- and 20-quarter yields.

As in Ang and Piazzesi (2003), we also find that the three term-structure models slightly

outperform the random walk model in terms of mean absolute errors. There are also some

noticeable differences in terms of the other moments. In particular, the maximum absolute

forecast errors from the term-structure models tend to be smaller than those from the random

walk. Further, among the term-structure models, the maximum absolute forecast errors from

the non-expected utility model are smaller than those from the other models for maturities of 4,

8, 12, and 16 quarters. The fact that the three term-structure models only have slight differences

when compared in terms of their predictive ability is perhaps not surprising given their similar

variance decompositions.15

4 Empirical Implications

4.1 Volatilities of Yields and Yield Changes

Litterman, Scheinkman, and Weiss (1991) document a hump-shaped pattern in the term struc-

ture of unconditional volatilities of yields and yield changes. The top panel of Table 10 shows

the volatilities of the actual market yields across maturities. Here the hump occurs at a maturity

of two quarters: volatility is relatively lower for one-quarter bonds, peaks for two-quarter bonds,

and then decreases monotonically as the maturity increases from four to twenty quarters. A

similar pattern occurs in the term structure of unconditional volatilities of yield changes, shown

in the top panel of Table 11.

Can any of the three model specifications reproduce the term structure of volatilities? To

answer this question, we generated 1000 samples of artificial yields for each maturity of the

same length as the actual data, under each model specification. This involved using the OLS

estimates to recursively generate data for the state variables according to the VAR specification

and then feeding those data into the bond-pricing formulas, evaluated at the point estimates in

Tables 2 and 4, to generate the yields data.

The volatilities of the simulated yields and yield changes are reported in the bottom panels

of Tables 10 and 11, respectively. The reported statistics are the mean values across the 1000

15The out-of-sample forecast comparison was also extended to a four-quarter horizon. The relative differences

across the three models were similar to those at the one-quarter horizon.
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replications, along with asymmetric 95% confidence intervals constructed from the quantiles of

the simulated distributions. For both yields and yield changes, the non-expected utility model

successfully reproduces the hump-shaped pattern of volatilities across bond maturities. On

the contrary, the expected utility and the reduced-form models do not reproduce the hump.

Indeed, Tables 10 and 11 show a strictly decreasing term structure of volatilities for those two

specifications.

4.2 Violations of the Expectations Hypothesis

Campbell-Shiller Regressions

According to the expectations hypothesis of the term structure of interest rates, long-term

yields are the average of expected future short yields over the holding period of the long-term

asset, plus a constant risk premium. This implies that current spreads between yields of dif-

ferent maturities predict future yield changes. Campbell and Shiller (1991) consider predictive

regressions of the form

y
(n−1)
t+1 − y

(n)
t = β

(n)
0 + β

(n)
1

1

n − 1

(
y

(n)
t − y

(1)
t

)
+ ε

(n)
t+1, (21)

which should produce a slope coefficient of 1 under the expectations hypothesis. Campbell and

Shiller find that the slope coefficient is less than 1 and decreasing in n.16 Bansal and Zhou (2002)

show that this predictability evidence can be explained by a term structure model, where the

short rate and the market prices of risks are subject to regime shifts. More generally, Dai and

Singleton (2002) and Duffee (2002) show that the Campbell-Shiller findings can be explained by

reduced-form term structure models, provided that the market prices of risk take some flexible

form so that the expected excess bond returns are positively correlated with the yield spread.

Wachter (2006) shows that a consumption-based model of the term structure with market prices

of risk generated by external habit can also explain the Campbell-Shiller findings. It should be

noted that Wachter calibrates her model to the data.

The question we ask here is whether any of the general-purpose term structure models

we consider can generate the required risk premiums for the specific set of parameter values

that correctly fit the data. Table 12 shows the results for the regression in (21) with n =

16The observed violations of the expectations hypothesis could also be the result of monetary policies that

adjust short rates in response to the slope of the yield curve (see McCallum 1994, Kugler 1997, and Gallmeyer,

Hollifield, and Zin 2005).
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4, 8, 12, 16, 20.17 The top panel shows the slope coefficients and R2’s found in the actual data.

As in previous studies, the slope coefficients are negative and decreasing with maturity.

The three lower panels of Table 12 show how closely the three models can mimic the pattern

of slope coefficients. Following Bansal and Zhou (2002) and Wachter (2006), we generated 1000

samples of artificial yields, as described above for the term structure of volatilities. For each

simulated sample, we ran the regression in (21) and computed the R2. The three lower panels of

Table 12 report the mean slope coefficients along with asymmetric 95% confidence intervals. The

non-expected utility model produces mean slope coefficients with the downward pattern across

maturity and the actual coefficients are well covered by the respective confidence intervals. In the

expected utility case, however, the mean slope coefficients do not decrease monotonically with

n, although the actual coefficients are covered by the respective confidence intervals. Perhaps

a more serious problem revealed by Table 12 is the slope coefficient associated with n = 4 in

the reduced-form model (first column, bottom panel). In that case, the mean slope coefficient is

positive and the actual slope coefficient of −0.603 is only marginally covered by the confidence

interval [−0.675, 1.747]. This indicates that there might be a deeper problem with the implied

risk premiums. We examine this further in predictive regressions of excess bond returns using

forward rates.

Cochrane-Piazzesi Regressions

Another way to state the expectations hypothesis of the term structure of interest rates is that

holding-period excess returns should not be predictable. Cochrane and Piazzesi (2005) consider

the predictive regression of 4-quarter excess bond returns on the initial yield and forward rates:

rx
(n)
t+4 = β

(n)
0 + β

(n)
1 y

(4)
t +

5∑
i=2

β
(n)
i f

(4i)
t + ε

(n)
t+4, n = 8, 12, 16, and 20, (22)

where rx
(n)
t+4 = p

(n−4)
t+4 − pn

t − y
(4)
t is the return (in excess of the 4-quarter bond yield) from

buying an n-quarter bond at time t and selling it as an (n− 4)-quarter bond at time t + 4, and

fn
t = p

(n−4)
t −p

(n)
t is the forward rate for loans between time t+n−4 and t+n; pn

t is the log price

of an n-year bond at time t. Note that time increments are in years. Cochrane and Piazzesi find

a robust tent-shaped pattern of slope coefficients for all maturities, with regression R2 values

around 35%. This violation of the expectations hypothesis extends the classic regressions of

Fama and Bliss (1987) and Campbell and Shiller (1991). Fama and Bliss found that the spread

17As usually done, the change y
(n)
t+1−y

(n)
t is used instead of y

(n−1)
t+1 −y

(n)
t , since y

(n−1)
t+1 is not available. Bekaert,

Hodrick, and Marshall (1997) discuss the effects of this approximation.
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between the n-year forward rate and the one-year yield predicts the one-year excess return

of the n-year bond, with R2 about 18%. As mentioned above, Campbell and Shiller found

similar results forecasting yield changes with yield spreads. Cochrane and Piazzesi’s findings

substantially strengthen that evidence against the expectations hypothesis. In particular, they

show that the same linear combination of forward rates—the regressors in (22)—predicts bond

returns at all maturities, while Fama and Bliss and Campbell and Shiller relate each bond’s

expected excess return to a different forward spread or yield spread.

The size of the predictability and nature of projection coefficients in regressions like (22) is

quite puzzling and, as Bansal, Tauchen, and Zhou (2004) state, “constitutes a serious challenge

to term structure models.” Bansal, Tauchen, and Zhou account for the predictability evidence

from the perspective of latent factor term structure models. They show that the regime-switching

model of Bansal and Zhou (2002) can empirically account for these challenging features of the

data, while affine specifications cannot. In this section, we ask whether the risk premiums

generated by our model (based on observable factors) can also account for the tent-shaped

predictability pattern. To preview the results, it is only the non-expected utility model that

can do so. Both the expected utility version of the equilibrium model and the reduced-form

model fail to account for these important features. An important note is that the question

is not whether one can construct market prices of risk that generate the return regressions in

an affine model. Cochrane and Piazzesi (2005) show exactly how that can be done. As with

the Campbell-Shiller regressions, the question we ask is whether any of the considered term

structure models can generate the required risk premiums given the specific set of parameter

values that correctly fit the data.

Estimation results for the regressions in (22) are reported in the top panel of Table 13.

Consistent with the findings of Bansal, Tauchen, and Zhou (2004), we also found that the use

of the five forward rates in (22) creates a near-perfect collinearity problem in our data set and,

therefore, we concentrate on the regressions with y
(4)
t , f

(12)
t , and f

(20)
t as regressors. The tent-

shaped finding of Cochrane and Piazzesi (2005) is apparent in the upper left plot of Figure 2,

which plots the estimated regression coefficients. The regression R2 reported in Table 13 further

confirm their findings. The table shows that when the 8-quarter excess return is the regressand,

the R2 is around 34%, and that value reaches nearly 38% when the 16-quarter excess return

appears as regressand.

The three lower panels of Table 13 show how closely the three models can mimic the tent-

shaped pattern of regression coefficients. Following Bansal, Tauchen, and Zhou (2004), we
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generated 1000 samples of the same length as the actual data for each model. As with the

Campbell-Shiller regressions, this involved using the OLS estimates to recursively generate data

for the state variables according to the VAR specification and then feeding those data into the

bond-pricing formulas, evaluated at the point estimates in Tables 2 and 4, to generate the yields

data. For each simulated sample, we ran the regression in (22) and computed the R2. The

three lower panels of Table 13 report the mean regression coefficients along with asymmetric

95% confidence intervals. The upper right, lower left, and lower right plots of Figure 2 show the

mean regression coefficients for the non-expected utility model, the expected utility model, and

the reduced-form model, respectively. From those plots, it is immediately clear that only the

non-expected utility model can empirically account for the tent-shaped pattern of coefficients

from predictive regressions of excess bond returns on forward rates. The lower left plot of Figure

2 shows that the expected utility model fails to capture the predictability of the 3- and 5-year

forward rate for all excess returns. As the lower right plot of Figure 2 shows, the reduced-form

model fails even more so at capturing those predictability components. These shortcomings

are further confirmed even when sampling error is accounted for. The confidence intervals in

Table 13 show more formally the correspondence between the non-expected utility model and

the actual data. In that case, all the actual coefficients are covered by the respective confidence

intervals. On the contrary, the confidence intervals for both the expected utility model and

the reduced-form model fail to cover several of the actual coefficients. In particular, all the

coefficients associated with the 3- and 5-year forward rates (β
(n)
3 and β

(n)
5 ) are not covered by

the respective confidence intervals derived under those two specifications.

The predictability results presented here can be related to those obtained by Bansal, Tauchen,

and Zhou (2004) with term structure models based on latent factors. Those authors show

that their preferred two-factor regime-switching specification captures business cycle movements

between economic expansions and recessions, and that these transitions affect the term structure

of interest rates. A recession usually means a significant decline in economic activity spread

across the economy, lasting more than a few months, normally visible in real GDP. It is therefore

not surprising that our equilibrium model featuring inflation and consumption—an important

component of GDP—also justifies the size and nature of bond return predictability. What is

more intriguing are the contrasts between the non-expected utility model and its restricted

expected utility version and the reduced-form model.
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4.3 Key Differences

Why are the implied risk premiums so different? A comparison of the coefficients in (9) with

those in (19) provides some hints. Aside from the presence of the vector J in (9), the most

notable difference between the two specifications is that the reduced-form model has μ − Σλ0

and Φ−Σλ1 in (19) instead of just μ and Φ, respectively, in (9). This means that the effects of

μ and Φ on bond yields cannot be disentangled from that of Σ. Figure 3 plots the intercept and

factor loadings for maturities ranging from 1 to 20 quarters, where the solid lines correspond

to the non-expected utility model, the dashed lines to the expected utility model, and the

dotted lines to the reduced-form model. By construction, the intercept and factor loadings are

identical in value at the beginning and end points. Both the short rate and the term spread

load in similar fashions across the three specifications. Using the non-expected utility model

as a benchmark for comparisons, we see that the tight link between μ and Φ and Σ in the

reduced-form specification leads to marked differences for the intercept terms (upper left plot),

the market return loadings (middle right plot), the inflation loadings (lower left plot), and the

consumption loadings (lower right plot). In those cases, we see a build-up effect as n increases.

Consider next the expected and non-expected utility models. The obvious difference is that the

return on the market portfolio plays no contemporaneous role in the SDF under the expected

utility specification. That expected utility restriction appears most noticeably in terms of the

consumption loadings, especially for longer bond maturities (lower right plot).

Another related and important difference between the non-expected utility model and the

reduced-form one can be seen from an examination of the innovations to their respective (log)

SDFs, log m$
t+1 − Et[log m$

t+1]. The time series of implied innovations for the non-expected

utility model are shown in the top plot of Figure 4 and those for the reduced-form model are

shown in the middle plot of that Figure; the two plots are shown on the same scale. A striking

result is the difference between the volatilities of the innovations. Indeed, the reduced-form

SDF innovations appear far more volatile than those of the non-expected utility model. This

clearly illustrates why the parameter estimates for the reduced-form model (in Table 4) have

large standard errors. It also explains the behavior of the reduced-form factor loadings.

Reconciling the differences

The coefficients of the predictive regression in (22) are further analyzed by decomposing their

matrix form β̂(n) = (X ′X)−1X ′Y (n), n = 8, 12, 16, and 20. Table 15 shows the mean values of

the matrix (X ′X)−1 and the vectors X ′Y (n) across the 1000 bootstrap replications of the non-
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expected utility model and the reduced-form model. Using the non-expected utility model as

the benchmark for comparison, we see that the reduced-form model generates initial yields y
(4)
t

and forward rates f 12
t , f 20

t that are too volatile so that the associated (X ′X)−1 matrix is too

“small.” This is readily seen in the lower right plot of Figure 2, where the 5-year coefficients are

compressed around zero.

Recall that the reduced-form model is estimated following a two-step procedure as in Ang,

Piazzesi, and Wei (2006); i.e., the λ parameters that determine the market prices of risk are

estimated conditional on the first-step VAR parameters. As a check on this constraint, we

reestimated the λ parameters conditional on the matrix Φ estimated from the non-expected

utility model, reported in Table 2. Table 14 shows the parameter estimates of this modified

reduced-form model. Compared to the original results in Table 4, the estimated λ’s and their

associated standard errors are seen to change quite dramatically. In most cases, the standard

errors are smaller resulting in tighter confidence intervals. The bottom plot of Figure 4 shows

the time series of innovations to the SDF of the modified reduced-form model. Relative to the

pattern in the middle plot of that Figure for the original reduced-form SDF, the modification

achieves a remarkable reduction in overall volatility.

The efficiency gains of the modified reduced-form model are apparent in the decomposition

of the predictability coefficients, shown in the bottom portion of Table 15. The associated

(X ′X)−1 matrix is now much closer to that of the non-expected utility model and indeed, as

Figure 5 shows, the modified reduced-form gets much closer to producing the tent-like pattern

of predictability regression coefficients. These results are perhaps not surprising since the con-

ditioning values of Φ, which affect the second-step λ’s, are precisely those that rationalize the

risk premiums in the equilibrium model.

5 Conclusion

We have proposed an equilibrium model of the term structure of interest rates that can ac-

count for several stylized facts. In particular, this state-dependent recursive utility model can

empirically account for the tent-shaped pattern and magnitude of coefficients from predictive

regressions of excess bond returns on forward rates—documented by Cochrane and Piazzesi

(2005). This is an important result since the equilibrium model ties the predictable variation in

excess bond returns to underlying macroeconomic fundamentals and captures well the important

features of bond risk premiums with economically plausible values for the structural preference
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parameters. The results emphasize the importance of both non-expected utility preferences and

the variable rate of time preference for explaining violations of the expectations hypothesis.

Our findings point to the fact that arbitrage-free models with similar dynamics for the

economic drivers produce stochastic discount factors that are too volatile and therefore cannot

explain as well bond risk premiums. They fail to account for the constraints that investors’

preferences may impose between the prices-of-risk factors. Our main contribution is to show

that these constraints matter empirically.

Our empirical assessment reveals also that the equilibrium model fits the term structure

of interest rates as well as the arbitrage-free model. Variance decompositions show that the

state variables make very similar contributions in forecasting future bond yields across the three

specifications. A noteworthy result is that the overall proportion of unconditional variance

accounted for by the two term structure factors is about 80% for all bond maturities and the

remaining 20% is accounted for by the return on the market portfolio, the rate of inflation,

and the rate of consumption growth. An out-of-sample forecast exercise shows that both term-

structure models have only slight differences when compared in terms of their predictive abilities.

However, the recursive utility equilibrium model seems to reproduce better the hump-shaped

pattern in the term structure of unconditional volatilities of yields and yield changes.
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Schmitt-Grohé, S. 1998. “The International Transmission of Economic Fluctuations: Effects

of U.S. Business Cycles on the Canadian Economy.” Journal of International Economics

44: 257–287.

Schwartz, E. and W.N. Torous. 1999. “Can we Disentangle Risk Aversion from Intertemporal

Substitution in Consumption.” UCLA Working Paper.

Uribe, M. 1997. “Exchange-Rate-Based Inflation Stabilization: The Initial Real Effects of

Credible Plans.” Journal of Monetary Economics 39: 197–221.

Uzawa, H. 1968. “Time Preference, the Consumption Function, and Optimal Asset Hold-

ings.” In Capital and Growth: Papers in Honour of Sir John Hicks, edited by J.N. Wolfe.

Chicago: Aldine.

Vasicek, O. 1977. “An Equilibrium Characterization of the Term Structure.” Journal of

Financial Economics. 5: 177–188.

Vissing-Jørgensen, A. 2002. “Limited Asset Market Participation and the Elasticity of In-

tertemporal Substitution.” Journal of Political Economy 110: 825–853.

Wachter, J.A. 2006. “A Consumption-Based Model of the Term Structure of Interest Rates.”

Journal of Financial Economics 79: 365–99.

Weil, P. 1989. “The Equity Premium Puzzle and the Risk-Free Rate Puzzle.” Journal of

Monetary Economics 24: 401–421.

31



Table 1. Summary Statistics of Yields Data

Maturity in quarters

1 2 4 8 12 16 20

Mean 0.056 0.059 0.061 0.063 0.065 0.066 0.067
Std. deviation 0.028 0.028 0.027 0.027 0.026 0.025 0.025
Skewness 1.010 0.962 0.826 0.824 0.852 0.871 0.875
Kurtosis 4.474 4.298 3.886 3.712 3.664 3.597 3.478
Min 0.009 0.010 0.011 0.014 0.017 0.022 0.025
Max 0.151 0.159 0.155 0.154 0.151 0.150 0.145

Note: The quarterly data set has 182 observations from 1959Q3 to 2004Q4.

32



Table 2. Parameter Estimates: Equilibrium Model

Non-expected utility case

Preference parameters

CRRA 6.057
[5.393, 6.722]

EIS 0.359
[0.297, 0.421]

Persistence matrix Φ

Short rate 0.975 0.263 -0.024 0.101 0.284
[0.346, 1.604] [-0.355, 0.881] [-0.576, 0.527] [-0.498, 0.699] [-0.298, 0.866]

Spread 0.021 0.804 0.028 -0.133 -0.337
[-0.704, 0.747] [0.120, 1.488] [-0.742, 0.798] [-0.835, 0.568] [-1.103, 0.428]

Market return 0.136 1.067 0.126 -0.625 -1.526
[-0.512, 0.785] [0.346, 1.788] [-0.542, 0.795] [-1.215, -0.040] [-2.130, -0.923]

Inflation -0.020 0.402 0.042 0.641 0.372
[-0.749, 0.708] [-0.289, 1.092] [-0.616, 0.700] [ 0.017, 1.267] [-0.247, 0.992]

Consumption 0.046 0.184 0.025 -0.242 -0.409
[-0.291, 0.383] [-0.228, 0.596] [-0.283, 0.334] [-0.578, 0.093] [-0.718, -0.101]

Expected utility case

Preference parameters

CRRA 2.747
[1.880, 3.614]

EIS 0.364
[0.249, 0.478]

Persistence matrix Φ

Short rate 1.007 0.182 0.009 -0.006 -0.063
[0.457, 1.556] [-0.352, 0.717] [-0.421, 0.440] [-0.560, 0.548] [-0.686, 0.558]

Spread -0.043 0.881 -0.038 -0.110 -0.396
[-1.069, 0.981] [0.006, 1.756] [-0.796, 0.720] [-1.007, 0.786] [-1.463, 0.671]

Inflation 0.608 0.316 0.402 0.404 0.515
[-0.326, 1.543] [-0.588, 1.222] [-0.530, 1.335] [-0.573, 1.382] [-0.474, 1.506]

Consumption -0.226 -0.121 -0.156 -0.271 -0.449
[-1.097, 0.645] [-1.109, 0.867] [-1.133, 0.819] [-1.088, 0.545] [-1.357, 0.459]

Notes: CRRA denotes the coefficient of relative risk aversion, EIS the elasticity of intertemporal substitution. The
expected utility model restricts the CRRA to the reciprocal of the EIS so that the market return plays no
contemporaneous role in the SDF. The numbers in square brackets are symmetric 95% confidence intervals. In the
restricted case, the confidence limits for the EIS were found by the delta method.
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Table 3. VAR Estimation Results

Persistence matrix Φ

Short rate 0.918 0.043 0.011 0.323 0.407
[0.859, 0.978] [-0.086, 0.172] [-0.007, 0.029] [ 0.091, 0.554] [ 0.139, 0.675]

Spread 0.025 0.842 0.004 -0.117 -0.267
[-0.016, 0.068] [0.750, 0.934] [-0.009, 0.017] [-0.282, 0.048] [-0.458, -0.076]

Market return 0.096 0.865 0.175 -0.274 -1.628
[-0.393, 0.586] [-0.195, 1.927] [ 0.025, 0.326] [-2.182, 1.633] [-3.835, 0.578]

Inflation 0.024 -0.078 -0.002 0.779 0.231
[-0.003, 0.052] [-0.139, -0.018] [-0.010, 0.007] [ 0.671, 0.888] [ 0.105, 0.356]

Consumption -0.008 0.056 0.009 -0.102 0.208
[-0.040, 0.024] [-0.013, 0.125] [-0.001, 0.019] [-0.227, 0.023] [-0.063, 0.353]

Notes: The entries are the estimation results from the macroeconomic data. The numbers in square brackets are
symmetric 95% confidence intervals.
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Table 5. In-Sample Absolute Pricing Errors (Basis Points)

Maturity in quarters

2 4 8 12 16

Equilibrium model
Non-expected utility case
Mean 13.20 19.94 16.36 11.91 7.45
Std. dev. 12.50 17.03 13.70 9.39 6.23
Min 0.02 0.36 0.09 0.01 0.12
Max 72.15 104.88 71.51 47.19 37.74

Expected utility case
Mean 25.74 28.07 25.03 18.61 13.66
Std. dev. 18.38 22.14 19.47 14.75 11.85
Min 0.25 0.31 0.25 0.01 0.11
Max 87.70 139.46 112.66 70.98 64.55

Reduced-form model
Mean 14.55 20.56 16.93 13.72 12.36
Std. dev. 12.26 17.38 13.19 10.68 9.34
Min 0.42 0.34 0.05 0.16 0.34
Max 75.22 107.98 70.31 53.61 47.79

Note: The absolute pricing errors are calculated over the 182 quarterly
observations for each of the 5 maturities that are not assumed to be
priced without any sampling error. The 1- and 20-quarter yields are
priced without error. The expected utility model restricts the CRRA
to the reciprocal of the EIS.
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Table 6. Variance Decompositions: Non-Expected Utility Model

Forecast horizon (quarters)

4 8 20 40 ∞
2-quarter yield
Short rate 90.29 84.76 80.31 79.40 79.29
Spread 0.79 1.24 1.35 1.30 1.29
Market return 1.87 2.19 2.20 2.18 2.18
Inflation 2.33 5.41 8.41 9.07 9.15
Consumption 4.72 6.40 7.73 8.05 8.09

4-quarter yield
Short rate 87.30 82.12 78.25 77.51 77.42
Spread 3.39 3.46 2.90 2.63 2.59
Market return 2.24 2.49 2.41 2.36 2.35
Inflation 2.60 5.85 8.93 9.60 9.68
Consumption 4.47 6.08 7.51 7.90 7.96

8-quarter yield
Short rate 78.36 75.42 73.92 73.78 73.77
Spread 12.83 10.32 6.96 5.96 5.84
Market return 2.65 2.86 2.64 2.55 2.54
Inflation 2.87 6.36 9.56 10.24 10.32
Consumption 3.29 5.04 6.92 7.47 7.53

12-quarter yield
Short rate 70.57 70.24 71.01 71.40 71.45
Spread 21.21 15.90 9.93 8.32 8.13
Market return 2.87 3.05 2.76 2.64 2.62
Inflation 2.85 6.45 9.75 10.45 10.53
Consumption 2.50 4.36 6.55 7.19 7.27

16-quarter yield
Short rate 65.52 67.00 69.31 70.03 70.12
Spread 26.63 19.42 11.72 9.72 9.48
Market return 2.97 3.13 2.81 2.68 2.66
Inflation 2.79 6.44 9.81 10.52 10.60
Consumption 2.09 4.01 6.35 7.05 7.14

Note: The entries are the percentage contribution of the ith factor to the
h-step-ahead forecast of the bond yield.
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Table 7. Variance Decompositions: Expected Utility Model

Forecast horizon (quarters)

4 8 20 40 ∞
2-quarter yield
Short rate 90.50 84.97 80.43 79.49 79.38
Spread 0.63 1.10 1.26 1.22 1.21
Market return 1.79 2.16 2.18 2.17 2.16
Inflation 2.09 5.20 8.29 8.97 9.05
Consumption 4.99 6.57 7.84 8.15 8.20

4-quarter yield
Short rate 89.16 83.55 79.25 78.40 78.30
Spread 1.96 2.29 2.11 1.96 1.93
Market return 2.06 2.36 2.32 2.29 2.28
Inflation 2.45 5.66 8.74 9.41 9.49
Consumption 4.37 6.14 7.58 7.94 8.00

8-quarter yield
Short rate 83.79 79.18 76.18 75.69 75.64
Spread 7.41 6.46 4.73 4.15 4.07
Market return 2.12 2.51 2.44 2.38 2.38
Inflation 2.87 6.28 9.40 10.07 10.14
Consumption 3.81 5.57 7.25 7.71 7.77

12-quarter yield
Short rate 74.93 73.16 72.63 72.71 72.73
Spread 16.22 12.43 8.05 6.83 6.67
Market return 2.33 2.72 2.58 2.49 2.48
Inflation 3.11 6.64 9.80 10.47 10.54
Consumption 3.41 5.05 6.94 7.50 7.58

16-quarter yield
Short rate 64.83 66.82 69.26 69.99 70.08
Spread 26.34 18.91 11.38 9.45 9.22
Market return 2.45 2.86 2.67 2.56 2.55
Inflation 3.18 6.78 10.00 10.67 10.75
Consumption 3.20 4.63 6.69 7.33 7.40

Note: The entries are the percentage contribution of the ith factor to
the h-step-ahead forecast of the bond yield. The expected utility model
restricts the CRRA to the reciprocal of the EIS. The market return is
still a predictor of the other state variables in the VAR and hence still
makes a contribution in forecasting future bond yields.
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Table 8. Variance Decompositions: Reduced-form Model

Forecast horizon (quarters)

4 8 20 40 ∞
2-quarter yield
Short rate 90.00 84.54 80.19 79.30 79.19
Spread 0.77 1.21 1.32 1.27 1.26
Market return 1.92 2.21 2.21 2.19 2.18
Inflation 2.50 5.56 8.49 9.14 9.22
Consumption 4.81 6.48 7.79 8.10 8.15

4-quarter yield
Short rate 86.91 81.90 78.13 77.41 77.33
Spread 3.28 3.42 2.88 2.61 2.57
Market return 2.35 2.56 2.44 2.39 2.38
Inflation 2.65 5.89 8.94 9.61 9.68
Consumption 4.81 6.23 7.61 7.98 8.04

8-quarter yield
Short rate 77.33 74.85 73.63 73.54 73.53
Spread 12.74 10.29 6.96 5.98 5.86
Market return 2.79 2.92 2.67 2.58 2.56
Inflation 3.05 6.48 9.60 10.27 10.35
Consumption 4.09 5.46 7.14 7.63 7.70

12-quarter yield
Short rate 68.00 68.69 70.21 70.74 70.80
Spread 22.16 16.52 10.29 8.63 8.43
Market return 3.00 3.09 2.78 2.66 2.64
Inflation 3.39 6.85 9.94 10.60 10.67
Consumption 3.45 4.85 6.78 7.37 7.46

16-quarter yield
Short rate 60.68 64.07 67.79 68.80 68.92
Spread 29.34 21.15 12.66 10.51 10.24
Market return 3.31 3.28 2.88 2.74 2.72
Inflation 3.61 7.04 10.11 10.75 10.83
Consumption 3.06 4.46 6.56 7.20 7.29

Note: The entries are the percentage contribution of the ith factor to
the h-step-ahead forecast of the bond yield.
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Table 9. Out-of-Sample Absolute Pricing Errors (Basis Points)

Maturity in quarters

1 2 4 8 12 16 20

Random walk model
Mean 57.99 60.24 62.05 58.01 54.01 50.91 47.78
Std. dev. 71.39 69.71 61.69 52.66 45.09 41.11 38.45
Min 0.16 0.04 1.50 1.06 1.50 2.57 1.23
Max 492.16 506.20 458.94 367.10 291.80 239.83 197.20

Equilibrium model
Non-expected utility case
Mean 54.55 59.10 61.29 55.91 49.29 46.31 43.30
Std. dev. 67.92 65.64 58.16 50.91 45.34 41.94 38.04
Min 0.92 0.28 1.59 0.02 0.13 0.37 0.34
Max 475.71 479.81 439.58 337.51 291.60 264.35 238.89

Expected utility case
Mean 54.55 58.67 61.13 54.97 48.56 45.20 43.30
Std. dev. 67.92 64.82 57.26 49.11 42.80 39.84 38.04
Min 0.92 0.21 0.94 0.51 0.50 0.56 0.34
Max 475.71 469.32 447.59 362.00 311.48 278.61 238.89

Reduced-form model
Mean 54.55 59.28 61.59 54.86 48.14 44.69 43.30
Std. dev. 67.92 64.97 58.27 50.50 44.05 40.71 38.04
Min 0.92 0.07 0.33 0.43 0.03 0.87 0.34
Max 475.71 467.03 450.73 365.34 313.89 275.36 238.89

Note: The entries are one-quarter-ahead absolute forecast errors. The expected utility model
restricts the CRRA to the reciprocal of the EIS. The forecasts from the benchmark random walk
model are produced by simply assuming that future yields are equal to current yields. By
construction, both versions of the equilibrium model and the reduced-form model have identical
predictive abilities for 1- and 20-quarter yields.
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Table 12. Predictability of Yield Changes using Yield Spreads

n 4 8 12 16 20

Actual data

β
(n)
1 -0.603 -1.019 -1.438 -1.685 -1.839

R2 0.009 0.017 0.027 0.032 0.033

Equilibrium model
Non-expected utility case

β
(n)
1 -0.135 -0.482 -0.963 -1.396 -1.873

[-1.258, 1.139] [-1.549, 0.767] [-2.179, 0.401] [-2.793, 0.115] [-3.391, -0.252]
R2 0.006 0.011 0.020 0.027 0.037

[0, 0.029] [0, 0.050] [0, 0.075] [0, 0.083] [0, 0.105]

Expected utility case

β
(n)
1 -0.937 -0.747 -1.341 -2.061 -1.896

[-1.823, 0.006] [-1.891, 0.409] [-2.615, -0.116] [-3.467, -0.718] [-3.451, -0.340]
R2 0.017 0.012 0.027 0.050 0.038

[0, 0.056] [0, 0.048] [0, 0.084] [0.004, 0.126] [0.001, 0.108]

Reduced-form model

β
(n)
1 0.452 -0.357 -0.970 -1.649 -1.901

[-0.675, 1.747] [-1.497, 0.805] [-2.295, 0.259] [-3.214, -0.283] [-3.551, -0.379]
R2 0.008 0.008 0.019 0.032 0.038

[0, 0.038] [0, 0.042] [0, 0.072] [0, 0.096] [0.002, 0.112]

Note: The top panel reports the estimated slope coefficients and R2’s in the predictive regression of yield changes
on yield spreads in (21). The next 3 panels show the same statistics implied by the 3 model specifications. The
reported coefficients are the mean values across 1000 bootstrap replications. The numbers in square brackets are
asymmetric 95% confidence intervals constructed from the quantiles of the bootstrap distribution. Values less
than 10−3 are reported as zero.
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Table 13. Predictability of Excess Returns using Forward Rates

n β
(n)
0 β

(n)
1 β

(n)
3 β

(n)
5 R2

Actual data
8 -0.060 -0.900 2.159 -1.045 0.335
12 -0.089 -1.823 4.408 -2.287 0.362
16 -0.128 -2.631 6.132 -3.101 0.378
20 -0.168 -3.216 7.139 -3.438 0.366

Equilibrium model
Non-expected utility case
8 -0.057 -1.354 3.291 -1.737 0.257

[-0.139, -0.005] [-2.349, -0.258] [0.168, 6.072] [-3.712, 0.411] [0.080, 0.446]
12 -0.105 -2.547 6.197 -3.316 0.268

[-0.246, -0.014] [-4.305, -0.694] [0.845, 11.117] [-6.770, 0.414] [0.096, 0.455]
16 -0.151 -3.616 8.866 -4.792 0.265

[-0.352, -0.024] [-6.107, -1.098] [1.343, 15.896] [-9.622, 0.471] [0.100, 0.446]
20 -0.214 -4.630 10.446 -5.210 0.287

[-0.482, -0.048] [-7.803, -1.379] [0.797, 19.549] [-11.551, 1.564] [0.113, 0.482]

Expected utility case
8 -0.051 -0.458 0.972 -0.303 0.210

[-0.122, -0.004] [-0.916, 0.026] [0.345, 1.556] [-0.624, 0.046] [0.071, 0.380]
12 -0.102 -1.139 2.137 -0.609 0.260

[-0.225, -0.017] [-1.982, -0.257] [1.004, 3.214] [-1.181, 0.005] [0.106, 0.442]
16 -0.146 -1.953 3.405 -0.918 0.297

[-0.324, -0.031] [-3.115, -0.686] [1.784, 4.908] [-1.729, -0.060] [0.136, 0.485]
20 -0.188 -2.385 3.197 -0.190 0.270

[-0.414, -0.040] [-3.836, -0.739] [1.162, 5.107] [-1.237, 0.907] [0.099, 0.466]

Reduced-form model
8 -0.083 -0.498 0.586 0.204 0.241

[-0.151, -0.031] [-0.901, -0.032] [-0.041, 1.187] [-0.261, 0.687] [0.074, 0.420]
12 -0.132 -1.045 1.255 0.267 0.246

[-0.261, -0.040] [-1.760, -0.241] [0.039, 2.351] [-0.569, 1.124] [0.077, 0.418]
16 -0.184 -1.953 3.405 -0.918 0.297

[-0.376, -0.057] [-2.633, -0.474] [0.399, 3.640] [-1.055, 1.334] [0.079, 0.415]
20 -0.262 -2.032 1.700 1.163 0.263

[-0.514, -0.102] [-3.293, -0.560] [-0.424, 3.672] [-0.422, 2.664] [0.088, 0.435]

Note: The top panel reports the estimated coefficients and R2’s in the predictive regression of excess bond
returns on forward rates in (22). The next 3 panels show the same statistics implied by the 3 model
specifications. The reported coefficients are the mean values across 1000 bootstrap replications. The numbers
in square brackets are asymmetric 95% confidence intervals constructed from the quantiles of the bootstrap
distribution.
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Table 15. Decomposition of Predictability Coefficients

(X ′X)−1 X ′Y (8) X ′Y (12) X ′Y (16) X ′Y (20)

Non-expected utility model

0.081 -0.221 0.890 -0.947 3.161 4.647 5.423 5.626
32.967 -97.163 66.505 0.843 1.249 1.504 1.473

307.104 -216.936 1.087 1.658 2.035 2.208
156.265 1.158 1.776 2.186 2.438

Reduced-form model
0.075 0.101 -0.142 -0.204 1.950 5.383 5.774 5.007

4.646 -6.189 1.743 0.629 1.455 1.533 1.314
15.637 -9.647 0.843 1.930 2.163 2.069

8.869 0.866 1.974 2.210 2.254

Modified reduced-form model
0.097 -0.301 1.888 -1.911 2.808 4.484 5.803 5.207

10.747 -38.860 29.594 0.862 1.255 1.476 1.410
189.214 -157.299 1.094 1.699 2.114 2.181

134.392 1.117 1.750 2.192 2.274

Notes: The entries represent the decomposition of the estimated coefficients in the predictive
regression of excess bond returns on forward rates in (22), expressed here in matrix form. The
reported coefficients are the mean values across 1000 bootstrap replications.
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Figure 1. Subjective discount factor implied by the non-expected utility model.
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Figure 4. Innovation to the SDF of the non-expected utility model (top), the reduced-form model
(middle), and the modified reduced-form model (bottom).
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Figure 5. Predictability regression coefficients implied by the modified reduced-form model.
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