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Auditing Policies and Information Systems
in Principal-Agent Analysis*

Marie-Cécile Fagart† and Bernard Sinclair-Desgagné‡

Cet article traite des mesures de la performance qui sont induites par les
politiques optimales d'audit, dans un modèle principal-agent avec aléa moral.  Nous
faisons  d'abord remarquer que deux mesures A et B sont rarement comparables selon
l'étalement (en anglais "mean-preserving spread") de la distribution de leur ratio de
vraisemblance respectif.  Nous offrons toutefois une généralisation de ce critère usuel,
que nous utilisons pour montrer que, si le signe de la troisième dérivée de l'inverse de
la fonction d'utilité de l'agent est constant, alors il est possible de comparer A et B
parce que l'une des distributions de ratio de vraisemblance qui leur sont associées
domine l'autre au sens de la dominance stochastique du troisième ordre.  La
conséquence pratique de ce résultat est que le design des politiques optimales d'audit
nécessite non seulement l'arbitrage bien connu entre incitations et assurance, mais
aussi l'examen des risques contingents.

This paper considers the information systems induced by auditing policies in a
principal-agent model with moral hazard. We point out that two such information
systems A and B are seldom comparable using the customary mean-preserving spread
relation between their respective likelihood ratio distributions. We offer a general
extension of this criterion, however, and we use it to show that, provided the sign of
the third derivative of the agent's inverse utility function is constant, it is yet often
possible to rank A against B because one of the corresponding likelihood ratio
distributions dominates the other in the third order. The upshot is that the design of
optimal auditing policies involves not only the well-known tradeoff between risk-
sharing and incentives, but also an examination of the location of risk.

Mots-clés :  Principal-agent, aléa moral, audits, prudence, distribution du ratio de
vraisemblance, dominance stochastique du troisième ordre

Keywords: Principal-agent, moral hazard, audits, prudence, likelihood ratio
distribution, third-order stochastic dominance

                                                     
* We are grateful to Claude Fluet, Dominique Henriet and, most of all, Louis Eeckhoudt for valuable discussions on the topic of
this paper. The authors respectively thank CIRANO (Montréal) and the Laboratoire d'Économie Industrielle (LEI-CREST, Paris)
for their hospitality and support while this paper was being written.

† Fagart: CREST-LEI, 28 Rue des Saints-Pères, 75007 Paris, France.

‡ Sinclair-Desgagné (corresponding author): CIRANO, 2020 Rue Université, Montréal (Québec), Canada H3A 2A5.



1. Introduction

An important topic in the analysis of principal-agent relationships is the compari-

son of information systems that imperfectly correlate some common observables with the

agent’s hidden actions. Any classi…cation should …rst lead to identify and discard infor-

mation systems under which the principal achieves a relatively lower expected payo¤. A

“practical” (i.e. robust) ranking criterion, however, would also rely as little as possible

on speci…c features of the current relationship, such as the agent’s utility function.

Starting with the seminal contribution of Holmström (1979), some orderings have suc-

cessively been studied by Gjesdal (1982), Grossman and Hart (1983), Kim (1995), Jewitt

(1997), and Demougin and Fluet (2000). One shortcoming of the suggested rankings is

that they hardly convey the actual costs of gathering and communicating the prescribed

observables (see Baker (1992)). A second weakness, which most of the literature primar-

ily addresses, is that they are incomplete and may not allow to decide in some contexts

between relevant information systems.

Among the available orderings, the “MPS criterion” introduced by Kim (1995) - which

classi…es information systems according to the mean-preserving spread relation between

their respective likelihood ratio distributions - is now the one that best deals with the

latter criticism.1 This criterion embodies those that were proposed earlier and constituted

1To be precise, the MPS criterion says that (assuming the …rst-order approach to principal-agent
problems is valid) an information system A yields a higher expected payo¤ to the principal than an
information system B if the likelihood ratio distribution associated with A is a mean-preserving spread of
the one associated with B, or in other words if the latter dominates the former in the sense of second-order
stochastic dominance. Alternative criteria were recently introduced and discussed by Jewitt (1997) and
Demougin and Fluet (2000), who show that these are actually equivalent to the MPS criterion.
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indeed a radical improvement, for it allows comparisons between information systems that

are not necessarily nested.

While studying the information systems induced by auditing policies, however, we

found out that this signi…cant group largely eluded the MPS criterion. An intuitive

explanation of this fact would be the following. Previous work by Baiman and Demski

(1980), Dye (1986), Sinclair-Desgagné (1999) and others have shown that optimal (and

economically plausible) audits are often either upper-tailed or lower-tailed, i.e. triggered

by the observation of respectively good or bad signals. In selecting an auditing policy

to bring about a given action by the agent, a rational principal would thus typically

discriminate between compound information systems of the form

A (upper-tailed policy): use LX + LY if signal X ¸ x0, and LX otherwise;

versus

B (lower-tailed policy): use LX + LY if signal X · x00, and LX otherwise;

where Prob{X ¸ x0} = Prob{X · x00}, i.e. the two policies entail the same frequency

of audits (hence the same cost), and LX and LY are two independent likelihood ratio

distributions. Yet, A and B clearly have the same mean zero (since both LX and LY have

mean zero) and the same variance, so neither is a mean-preserving spread of the other.

The objective of this paper is thus to develop a ranking criterion which supplements

the MPS criterion and allows to make comparisons between information systems that

commonly occur in the analysis of auditing policies.
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The upcoming section lays out the basic principal-agent model and its main assump-

tions, which are meant in particular to guarantee the validity of the …rst-order approach.2

Section 3 discusses optimal audits and formalizes the above intuitive explanation. Propo-

sition 1 …rst establishes that the frequency of optimal audits decreases with their cost,

this frequency being equal to 1 when the cost is 0. Proposition 2 points out next that,

except for peculiar instances of the agent’s utility function, optimal audits are not just

characterized by an appropriate frequency but they are also contingent upon observing

the level of some prede…ned signal.3 When we compute the variance of the likelihood

ratio distribution associated with an auditing policy, however, we …nd that it only de-

pends on the frequency of audits and on the Fisher information indices associated with

the underlying likelihood ratio distributions; hence, the MPS criterion cannot distinguish

between two contingent auditing policies that bear the same frequency.

Section 4 is then devoted to developing a …ner ranking that would still be based on the

comparison of likelihood ratio distributions. A convenient criterion is presented through

proposition 3. According to it, a rational principal would again prefer an information

system which likelihood ratio distribution is dominated in the sense of second-order sto-

chastic dominance (corollary 1); this new criterion thus coincides with the MPS criterion.

Provided the sign of the third derivative of the agent’s inverse utility remains constant,

2The …rst-order approach could have been justi…ed in the present context using the assumptions made
in Jewitt (1988). But since it is important here not to restrict a priori the range of possible agent’s utility
functions, our assumptions are …nally adapted from Sinclair-Desgagné (1994).

3For instance, the principal would rather use upper-tailed audits when the agent’s coe¢cient of ab-
solute prudence (as de…ned in Kimball (1990)) is larger that three times his coe¢cient of absolute risk
aversion. This key result, and other related ones, will be discussed below.
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furthermore, the criterion yields a …ner ordering of information systems based on third-

order stochastic dominance (corollary 2). This feature is used in section 5, where we …nally

show that it allows a ranking of upper-tailed and lower-tailed audits which portrays the

principal’s choices (proposition 4). Section 6 contains some concluding remarks.

2. The Model

Consider a one-period relationship between a principal and an agent. An amount of

e¤ort a 2 [0;1) is expected from the latter. This e¤ort, however, is only imperfectly

observable through some random variables X and Y . We assume that X and Y are

conditionally independent, so for a given e¤ort a the realizations x and y of the random

variables obey the conditional distributions F (x; a) andG(y; a) respectively. Those distri-

butions have respective densities noted f(x; a) and g(y; a) that exhibit constant support

(denoted by ¡X and ¡Y ) with respect to a and are twice continuously di¤erentiable in a

for every x and y. Throughout this paper the subscript a refers to the partial derivative

with respect to a.

The likelihood ratios associated with X and Y will now be respectively denoted

LX(x; a) =
fa(x; a)
f (x; a)

and LY (y; a) =
ga(y; a)
g(y; a)

. Clearly, these ratios are themselves ran-

dom variables, and their respective distribution is called a “likelihood ratio distribution.”

It is well known that all likelihood ratio distributions have the same mean EX[LX ] =

EY [LY ] = 0. The variance of, say, LX is then given by V ar(LX) = E [(LX)2]; it is often

denoted IX and called the “Fisher information index” associated with X:4

4The Fisher information index is well-known to statisticians and econometricians (see Gouriéroux and
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The risk neutral principal routinely observes the value of X. Based on this, she may

either compensate the agent immediately according to a wage schedule w(X), or she may

audit the agent at a constant cost K - thereby also gathering signal Y - and pay him

according to a sharing rule s(X;Y ). We suppose that the principal can commit to a

probability m(x) of making an audit upon observing X = x. Her expected cost when the

agent delivers e¤ort a is therefore given by

(1)

EC =
Z

¡X

Z

¡Y
f(1¡m(x))w(x) +m(x)s(x; y)gdF (x; a)dG(y; a) +K

Z

¡X
m(x)dF (x; a):

The latter integral M (a) =
R
¡X
m(x)dF (x; a) yields the “frequency” (or the “intensity”)

of audits under a policy m(X), when the agent expends an e¤ort level a.

The agent’s preferences are assumed to be additively separable in e¤ort and wealth.

The cost of e¤ort is scaled so that its …rst-order derivative is equal to 1. The agent’s

attitude with respect to uncertain variations of his wealth exhibits risk aversion and is

represented by a positive, strictly concave and three-times continuously di¤erentiable Von

Neumann-Morgenstern utility index u(¢). The agent’s expected utility after putting an

e¤ort a under a contract [w; s;m] is then precisely

(2) EU =
Z

¡X

Z

Y
f(1¡m(x))u(w(x)) +m(x)u(s(x; y))gdF (x; a)dG(y; a) ¡ a:

Monfort (1989), for example) Note that EX [(LX )2] = EX [¡ @LX
@a ], so this index provides a measurement

of the sensitivity of the likelihood ratio with respect to a. For a recent account of the pervasiveness and
usefulness of the Fisher information index in principal-agent analysis, see Dewatripont et al. (1999).
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In the upcoming sections, we let ' = u¡1 denote the inverse of u(¢), and the follow-

ing transformations of the agent’s utility index, ¢(w; ¾) ´ u(w)¾ ¡ w and ¢¤(¾) ´

Maxw2Wf¢(w; ¾)g, will be quite useful.

A rational principal will select an auditing policym(X) and wage schedules w(X) and

s(X;Y ) that implement a given e¤ort a at a minimal cost, provided the agent thereby

achieves his reservation utility level U and is also willing to deliver the expected e¤ort

level. This amounts formally to minimize (1), subject to participation and incentive

compatibility constraints given respectively by

(3) EU =
Z

¡X

Z

¡Y
f(1 ¡m)u(w) +mu(s)gdF dG¡ a ¸ U;

(4) a = argmax
e

Z

¡X

Z

¡Y
f(1¡m)u(w) +mu(s)gdF (x; e)dG(y; e) ¡ e:

The latter constraint involves a continuum of inequalities and is thus not generally

tractable. In what follows we replace it by a friendlier one which requires that the e¤ort

level a be an interior stationary point of the agent’s expected utility function, that is:

(5)
Z

¡X

Z

¡Y
[fa(x; a)g(y; a)+f (x; a)ga(y; a)]f(1¡m(x))u(w(x)+m(x)u(s(x;y))gdxdy¡1 ¸ 0:

We want this so-called “…rst-order approach” to always yield a solution that constitutes

an incentive compatible allocation (so that solves the initial problem as well). It can be
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shown that this will be the case if the following assumptions are met.

Monotone Likelihood Ratio Property (MLRP): For all a, the likelihood ratios

LX(x; a) =
fa(x; a)
f(x; a)

and LY (y; a) =
ga(y; a)
g(y; a)

are nondecreasing in x and y.

Convexity of the Distribution Function Condition (CDFC): For all x, y,

and a, Faa(x) ¸ 0 and Gaa(y) ¸ 0.

The …rst assumption is quite common in statistics and principal-agent analysis. It

implies (for univariate distributions only) that Fa(x) · 0 and Ga(y) · 0 for all x, y

and a, so larger realizations of X and Y make it more likely that the agent’s e¤ort was

higher. The second assumption is often invoked in principal-agent analyses that use the

…rst-order approach and it corresponds in turn to some (stochastic) decreasing returns

to e¤ort. Conditional distributions that satisfy those two assumptions can easily be

constructed. For instance, take a pair of di¤erent continuous distribution functions P (z)

and Q(z) with similar support such that P (z) · Q(z) for all z, and a pair of functions

® : [0;1) ! [0; 1] and ¯ : [0;1) ! [0; 1] increasing and concave such that ®(0) = ¯(0) =

0 and lim
a!1
®(a) = lim

a!1
¯(a) = 1. One may then let F (x; a) = ®(a)P (x) + (1 ¡ ®(a))Q(x)

and G(y; a) = ¯(a)P (y) + (1¡ ¯(a))Q(y).
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3. Optimal Auditing Policies

Let ¤ denote the Lagrangian function associated with the current principal-agent

problem. Using the notation of section 2, we have that

¤ = ¡K
Z

¡X
mdF +

Z

¡X
(1¡m)¢(w; ¸+ ¹LX)dF

+
Z

¡X

Z

¡Y
m¢(s; ¸ +¹(LX +LY ))dFdG¡ ¸(a + U) ¡ ¹;

where ¸ and ¹ are the multipliers corresponding to the participation and the incentive

constraints respectively. If [w(X); s(X;Y );m(X )] solves the principal-agent problem and

constitutes thereby an optimal contract, then the following conditions have to be satis…ed

for some ¸ ¸ 0 and ¹¸ 0:

1. if m(x) < 1, then w(x) = Argmaxw ¢(w; ¸ + ¹LX(x; a));

2. if m(x) > 0, then s(x; y) = Argmaxw ¢(w; ¸ +¹LX(x; a) + ¹LY (y; a)); and

for all x, m(x) maximizes m(x) ¢G(LX(x; a)) on [0; 1], where G(:) is de…ned as

(6) G(z) ´ EY [¢¤(¸ + ¹z + ¹LY )] ¡ ¢¤(¸ +¹z)¡K:

Given the …rst two conditions the latter can be written as

(7) m(x) = arg max
m2[0;1]

mf
Z

¡Y
[u(s)(¸+¹LX+¹LY )¡ s]dG¡ [u(w)(¸+¹LX)¡w]¡Kg:
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And when the decision to audit is randomized, i.e. when 1 > m(x) > 0 at some x, the

…rst and second conditions can also be written respectively as

(8) u0(w)f¸ + ¹LXg = 1;

(9) u0(s)f¸+ ¹LX + ¹LY g = 1:

If m(x) = 0 or 1 at some signal x, however, there is a multiplicity of optimal contracts,

since s(x; Y ) can be set arbitrarily at m(x) = 0 and any w(x) is also a possible solution

at m(x) = 1. In what follows, we shall suppose without losing generality that in this case

s(x; Y ) and w(x) still satisfy conditions 1 and 2, and so equations (8) and (9).

Together with the Monotone Likelihood Ratio Property, the latter two equations entail

that the optimal wages w(x) and s(x; y) are nondecreasing in x and y. Let us now turn

to auditing policies. The next statement …rst establishes that the frequency of audits is

naturally related to their unit cost K.

Proposition 1: An optimal auditing policy is such that, for any given a, M(a) is

decreasing with respect to K and M(a) = 1 when K = 0 .

The proof can be found in the Appendix. Note that the second part of this proposition

extends somewhat Holmström (1979)’s celebrated “su¢cient statistic” result: it says that

any informative signal about the agent’s e¤ort has positive value for the principal, even

when gathering such a signal could be a strategic decision. The following example now
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brings up a situation which highlights further the relationship between audit cost and

audit intensity.

Example: Let the agent’s preferences exhibit constant relative risk aversion (CRRA)

equal to 1=2, so they can be represented by a utility index of the form u(t) = t1=2. By

equations (8) and (9), the wage schedules in this case are given by

w(X) = (¸ +¹LX
2

)2 and s(X;Y ) = (¸ +¹LX +¹LY
2

)2:

Making substitutions in the participation constraint (3) and the incentive constraint (5)

then yields the following relationships:

EU =
¸
2

¡ a = U

and

EUa =
¹
2f

Z

¡X
(LX)2dF +M

Z

¡Y
(LY )2dG)g ¡ 1 =

¹
2 fIX +MIY g ¡ 1 = 0:

The principal’s expected cost can thus be written as

(10) EC¤ = (¸
2
)2 + (¹

2
)2fIX +MIY g+KM = (a + U)2 + 1

IX +MIY
+KM:

It appears therefore that this cost depends exclusively on the unit cost of an audit K and
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on the intensity M (a) of the chosen auditing policy. The latter would actually be set so

that

M (a) = 1 when K · IY
(IX + IY )2

,

M (a) = 0 when K ¸ IY
(IX)2

, and

M (a) =
1
IY

f(IY
K

)1=2 ¡ IXg when
IY

(IX + IY )2
< K <

IY
(IX)2

.

Observe also that this policy exhibits the intuitive property that the agent would be

audited less often under a signal X which is more informative (in the sense of Fisher).

In this example the principal is indi¤erent between auditing policies that would be

contingent on the observed value of X, as long as such policies have the same intensity.

This outcome is obviously rather peculiar. In their seminal article, for instance, Baiman

and Demski (1981) have identi…ed a signi…cant range of situations where an optimal

auditing policy would either be lower-tailed or upper-tailed. The next proposition is a

generalization of their main theorem.

Proposition 2: When '000(¢) = 0; optimal auditing is a matter of setting the ap-

propriate auditing intensity. When '000(¢) < 0 (resp. '000(¢) > 0), however, an optimal

auditing policy prescribes that audits be also triggered - with probability equal to 1 - by the

higher (resp. the lower) values of X.5

The proof is also presented in the Appendix. A heuristic derivation of this statement

5Note that contingent - albeit two-tailed - audits are also optimal when either both '000(¢) · 0 and
'000(¢) ¸ 0 are untrue (Young (1986)) or the observables X and Y are correlated (Lambert (1985)).
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might run as follows. First, de…ne

uN(x) = u(w(x));

uA(x) = EY [u(s(x; Y ))] = u(wA(x));

u(s(x; y)) = uA(x) +!(x; y) with EY [!(x; Y )] = 0;

and ½(x) = EY [s(x; Y )] ¡ wA(x);

so !(x; Y ) represents the contingent “lottery” (with prizes expressed in the units of the

agent’s utility function) associated with an audit that comes after an appraisal x, and

wA(x), ½(x) denote respectively the “certainty equivalent” and the “risk premium” asso-

ciated with such a lottery. A new formulation of the current optimization problem is now

available, that is:

EC =
Z

¡X
f(1¡m)'(uN) +m['(uA) + ½]gdF +K

Z

¡X
mdF(11)

EU =
Z

¡X
f(1¡m)uN +muAgdF ¡ a ¸ U(12)

EUa =
Z

¡X
f(1¡m)uN +muAgdFa +

Z

¡X

Z

¡Y
m!dFdGa ¡ 1 ¸ 0:(13)

Note that the risk premium ½ can in turn be written as

(14) ½(x) = EY ['(uA(x) +!(x; Y ))] ¡ '(uA(x)):

13



Remark 1: The principal’s problem is thereby equivalent to that of a Von-Neumann-

Morgenstern decision-maker with utility index ¡'(¢) who must select feasible contribu-

tions uN(X) and uA(X ) together with fair lotteries of the form !(x; Y ) and their contin-

gent probabilities of occurrence m(x).

If '000(¢) ´ 0, then ½ is invariant with respect to uA. In this case the decision-maker

prefers to set uN(x) = uA(x) whenever 0 <m(x) < 1, because ' is a convex function. By

equations (8) and (9), moreover,

(15) ¹LY = '0(uA(x) + !(x; Y )) ¡'0(uN(x));

so the contingent lotteries !(x; Y ) must be identical since '0 is a linear function. The

decision-maker’s problem amounts therefore to minimize

EC =
Z

¡X
'(uN(x))dF +M½ +KM

subject to

EU =
Z

¡X
uN(x)dF ¡ a ¸ U

EUa =
Z

¡X
uN(x)dFa +M

Z

¡Y
!dGa ¡ 1 ¸ 0:

Clearly, the only feature of audits that matters here is their intensity M .
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Now, let '000 be negative (the treatment of '000 > 0 is symmetric).6 This time the

decision-maker exhibits prudence (resp is non-prudent). When having to face a mean-

preserving additional risk, a prudent decision-maker prefers to see it attached to the best

rather than the worst outcomes (see Eeckhoudt et al. (1995)). At the previous solution

(uN(x) = uA(x), and !(x; Y ) invariant with respect to x), she would thus rather go for

m(x) larger when x is higher and m(x) smaller when x is lower. This suggests than an

optimal audit might now be upper-tailed. Moreover, prudence together with (14) implies

that the premium ½ must decrease with uA (see Kimball (1990), and Hartwick (1999)),

and that

EY ['0(uA(x) + !(x; Y ))] ¡ '0(uA(x)) < 0:

When being o¤ered a slight increase in uA(x) that keeps (1¡m)uN +muA constant the

decision-maker would therefore depart from any proposal in which uN(x) ¸ uA(x) and

0 < m(x) < 1, for this alternative o¤er entails that

dEC(x) = (1 ¡m)'0(uN)duN +m[EY ['0(uA(x) + !(x; Y ))]duA

= mfEY ['0(uA(x) + !(x; Y ))]¡ '0(uN)gduA < 0:

This suggests in turn that one should see uA(x) > uN(x) at the optimum, i.e. an audit

6 The sign of ' is negative, positive or zero when, for instance, the agent’s utility function shows
constant relative risk aversion (CRRA) respectively lower than, greater than, or equal (as in the above

example) to 1=2. More generally, '000(:) < (> or =) 0 if and only if P > (< or =) 3R , where P =
¡u000

u00

is the agent’s coe¢cient of absolute prudence, as de…ned and interpreted in Kimball (1990), and R = ¡u00

u0
that of absolute risk aversion.

15



would accordingly constitute a carrot rather than a stick from the agent’s viewpoint (and

conversely audit would be perceived as a stick when '000 > 0).

Let us now consider the information system generated by an auditing policy m(X) of

intensity M. Let Lm denote the likelihood ratio associated with such a policy. Clearly,

the event fLm · lg is the same as

fLX(X; a) · l and there is no auditg[fLX(X; a)+LY (Y; a) · l and an audit occursg .

The cumulative distribution ©m(¢) of Lm is therefore given by

(16) ©m(l) = Pr ob(Lm · l) =
Z

¡X
(1¡m)±(l¡LX)dF+

Z

¡X

Z

¡Y
m±(l¡LX¡LY )dF dG ,

where ±(z) = 1 as long as z ¸ 0, and ±(z) = 0 otherwise. The …rst and second moments

of this distribution are respectively

(17) E(Lm) = 0 and V ar(Lm) = IX(a) +MIY (a) ,

so the variance of the likelihood ratio distribution depends only on auditing intensity

and the Fisher information indices associated with X and Y. This supports the following

remark.

Remark 2: Two distinct contingent auditing policies that have the same intensity

cannot be ranked according to the mean preserving spread (MPS) relation between their
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respective likelihood distributions.

The MPS criterion is thus rather ine¤ective when one deals with the information

systems associated with various contingent auditing policies. The upcoming section will

now develop a suitable re…nement of this criterion.

4. A General Ranking Criterion

The previous discussion and the outcome arrived at in (17) suggest that the design

of optimal contingent audits might …nally come to performing some mean and variance-

preserving transformations (MVPT) of likelihood ratio distributions. According to previ-

ous works on such manipulations of probability distributions (see Menezes et al. (1980),

for instance), this would mean that in order to compare the obtained information systems,

and thereby supplement the MPS criterion, one should now invoke stochastic dominance

of the third order. The following subsection thus recalls brie‡y the notions of third and

nth-order stochastic dominance, their relationships and some useful implications. Subsec-

tion 4.2 and section 5 will next substantiate our current intuition.

4.1. Stochastic Dominance Orderings

LetX and Y be two random variables with corresponding distributions functions F (x)

and G(y) and densities f (x) and g(y) which are strictly positive on the interval (a; b).

These distributions are often compared according to some probability-weighted function

of deviations below an arbitrary target. This approach yields to the following partial

orderings of probability distributions.
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Definition: We say that X stochastically dominates Y in the nth order, noted

X &n Y , if for all t 2 [a; b] we have that
Z t

a
(t¡ z)n¡1ff(z) ¡ g(z)gdz · 0, the inequality

being strict on a subset of (a; b) of positive measure.

Equivalent forms of this de…nition are often useful. In order to concisely state one

of them, let us introduce some new notation. For Z a random variable taking values in

(a; b) and having a distribution function H with density h, let us write H (0)(z) = h(z),

H(1)(z) = H(z), and H(n)(z) =
Z z

a
H(n¡1)(r)dr. The following identity can now be

derived (via straightforward integration by parts):

(18)
Z t

a
(t¡ z)n¡1ff(z) ¡ g(z)gdz = (n¡ 1)![F (n)(t) ¡G(n)(t)].

It follows that X &n Y if and only if F (n)(t)¡G(n)(t) · 0, the inequality being strict on

a subset of (a; b) with positive measure.

It can be shown that

(19) X &n Y implies that X &n+1 Y ,

where the converse is obviously not true. Hence, third-order stochastic dominance in

particular provides a …ner ordering than second and …rst-order stochastic dominance.

Furthermore, consider an individual with Von Neumann-Morgenstern utility index

u : [a; b] ! R. By de…nition, she prefers strictly a lottery with prizes X to another one
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with prizes given by Y if
Z b

a
u(x)[f (z)¡ g(z)]dz > 0:

After integrating the left-hand side by parts successively three times, we get

Z b

a
u(x)[f(x) ¡ g(x)]dx = ¡

Z b

a
u0(x)[F (x) ¡G(x)]dx

= ¡u0(b)[F (2)(b) ¡G(2)(b)] +
Z b

a
u00(x)[F (2)(x) ¡G(2)(x)]dx

= ¡u0(b)[F (2)(b) ¡G(2)(b)] + u
00
(b)[F (3)(b) ¡G(3)(b)]

¡
Z b

a
u
000
(x)[F (3)(x) ¡G(3)(x)]dx .

The upcoming assertions which concern the relationship between stochastic dominance

and decision-making are now a direct consequences of the above.7

Remark 3: (i) If u0(¢) > 0 and X &1 Y , then X is strictly preferred to Y . (ii) If

u0(¢) > 0, u00(¢) < 0, and X &2 Y , then X is strictly preferred to Y . (iii) If E(X) = E(Y ),

u00(¢) < 0, and X &2 Y , then X is strictly preferred to Y . (iv) If X &1 Y , then

E(X) > E(Y ). (v) If X &2 Y , then E(X) ¸ E(Y ). (vi) If u00(¢) · 0, u000(¢) > 0,

u0(b)[E(X) ¡ E(Y )] ¸ 0, and X &3 Y , then X is strictly preferred to Y .

As we implicitly pointed out in the previous sections, there are also some important

linkages between stochastic dominance and the notion of variance. By de…nition, the

7Notice that E(X) =
Z b

a
xf (x)dx = b ¡

Z b

a
F (x)dx = b ¡ F (2)(b).
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di¤erence between the variance of X and that of Y is given by

V (X) ¡ V (Y ) =
Z b

a
x2[f(x)¡ g(x)]dx¡ E(X)2 + E(Y )2:

However, note that

Z b

a
x2[f(x) ¡ g(x)]dx = ¡2b[F (2)(b) ¡G(2)(b)] + 2[F (3)(b) ¡G(3)(b)]:

Hence,

(20) V (X) ¡ V (Y ) = 2[F (3)(b) ¡G(3)(b)] + [F (2)(b) ¡G(2)(b)][F (2)(b) + G(2)(b)] .

One can now draw the following conclusions.

Remark 4: (i) If X &2 Y , then V (X) < V (Y ). (ii) If X &3 Y and E(X ) ¸ E(Y ),

then V (X ) · V (Y ). (iii) If E(X) = E(Y ), V (X ) = V (Y ), u000(¢) > 0, and X &3 Y

(Y &3 X), then X is strictly preferred to Y (Y is strictly preferred to X ).

Finally, an appealing characteristic of the notions of second and third-order stochastic

dominance is that they are “constructive” in the sense that, if two distributions can

be compared using those rankings, then one can be obtained from the other through a

…nite number of straightforward manipulations involving mean-preserving spreads (i.e.

transfers of the probability mass from the center to the tails without changing the mean)

and mean-preserving contractions (i.e. transfers of the probability mass from the tails to
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the center without changing the mean). Our last remark constitute a formal statement

of this practical feature.

Remark 5: (i) (Rothschild and Stiglitz (1970)) If E(X) = E(Y ), then X &2 Y if and

only if G(¢) can be obtained from F (¢) via a mean-preserving spread (MPS). (ii) (Menezes

et al. (1980)) If E(X) = E(Y ) and V (X ) = V (Y ), then X &3 Y if and only if G(¢) can

be obtained from F (¢) via a mean and variance-preserving transformation (MVPT).

The …rst part is well-known and has been widely used throughout the economics and

decision-theoretic literatures. Lesser known and apparently much less intuitive is the

second part. According to Menezes et al. (1980), however, an MVPT is actually just a

combination of mean-preserving spreads and mean-preserving contractions.

4.2 Comparing Likelihood Ratio Distributions

With the previous background and discussion, we are now ready to state and prove a

general ranking criterion for the information systems arising generally in principal-agent

problems. This criterion is also based on likelihood ratio distributions. The MPS criterion

is thereafter derived as a special version of it.

Proposition 3: The principal prefers a signal T to a signal Z to implement a

given action a if ET [¢¤(¸T + ¹TLT )] ¸ EZ[¢¤(¸T + ¹TLZ)], where ¸T and ¹T are the

multipliers of the participation and the incentive constraints which appear in the principal-

agent problem with signal T .
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Proof. Let ¡i , H(t; a; i), h(t; a; i), and Li denote the support, distribution function,

density function, and likelihood ratio associated with signal i = T; Z . The corresponding

objective, participation constraint, and incentive compatibility contraint of the principal-

agent problem are now respectively written:

(21) ECi =
Z

¡i
w(t)dH(t; a; i)

Z

¡i
u(w(t))dH(t; a; i) ¡ a ¸ U(22)

Z

¡i
u(w(t))dHa(t; a; i) ¸ 1:(23)

The Lagrangian function associated with this problem is

¤i = ¡
Z

¡i
w(t)dH(t; a; i)+¸if

Z

¡i
u(w(t))dH (t; a; i)¡a¡Ug+¹if

Z

¡i
u(w(t))dHa(t; a; i)¡1g;

or equivalently

(24) ¤i = Ei[¢(w; ¸i +¹iLi)] ¡ ¸i(a +U )¡ ¹i .

>From the necessary optimality conditions, we know that there exist some nonnegative

multipliers ¸i and ¹i such that the wage schedule wi(¢) maximizes ¢(w; ¸i + ¹iLi) and
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the following equations are satis…ed:

(25) ¸if
Z

¡i
u(wi(t))dH(t; a; i) ¡ a¡ Ug = ¹if

Z

¡i
u(wi(t))dH (t; a; i)¡ 1g = 0 .

The principal now prefers the information system generated by signal T to the one gen-

erated by signal Z if using the former is cheaper, that is if EC¤Z ¡ EC ¤T ¸ 0. At an

optimum, we have that

¤¤i = Ei[¢¤(¸i + ¹iLi)] ¡ ¸i(a+ U) ¡ ¹i · Ei[¢(wi; ¸ +¹Li)] ¡ ¸(a +U )¡ ¹

for any ¸ ¸ 0 and ¹, and

(26) ¤¤T ¡ ¤¤Z = EC¤Z ¡ EC ¤T .

It follows that

EC¤Z ¡ EC ¤T ¸ ET [¢¤(¸T + ¹TLT )] ¡EZ[¢(wZ; ¸T + ¹TLZ)](27)

¸ ET [¢¤(¸T + ¹TLT )] ¡EZ[¢¤(¸T + ¹TLZ)] .

Hence, the principal selects signal T over signal Z to implement an action a whenever

ET[¢¤(¸T + ¹TLT )] ¸ EZ[¢¤(¸T + ¹TLZ)], as claimed. (Note that, in this model, the

multiplier ¹T is strictly positive.
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The following assertion, which is a restatement of Kim (1995)’s proposition 1, is now

a direct consequence of the proposition.

Corollary 1 (MPS criterion): The information system from a signal T is preferred

by the principal to the one from a signal Z if the likelihood ratio distribution of T is a

mean-preserving spread of the likelihood ratio distribution of Z, that is if LZ &2 LT :

PROOF: By de…nition, ¢¤(¾) = maxw2W ¢(w; ¾) where ¢(w; ¾) is a linear function

of ¾: As a consequence,

¢¤(¸¾0 + (1¡ ¸)¾1) = ¸¢(w(¸¾0 + (1¡ ¸)¾1); ¾0) + (1 ¡¸)¢(w(¸¾0 + (1¡ ¸)¾1); ¾1)

· ¸¢¤(¾0) + (1 ¡ ¸)¢¤(¾1) ;

so ¢¤(¢) is a convex function.8 Since

EK[¢¤(¸T + ¹TLK)] = ELK [¢
¤(¸T +¹TLK)], for K = T; Z,

the statement follows from Remark 3(ii).

Using Remark 3(vi), furthermore, an additional ranking criterion is now also available,

which is based on stochastic dominance of the third order.

Corollary 2: Let ¢¤000 ¸ (·)0. The information system from T dominates from

the principal’s viewpoint that from a signal Z when LT &3 LZ (LZ &3 LT ).

8The reader might have noticed that ¢¤ is actually the mathematical conjugate of '. And the
conjugate function of a convex function is itself convex (Rockafellar (1970)).
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In practice, the sign of the third derivative ¢¤(¢) could be inferred from the sign of the

third derivative of '(¢). By the envelope theorem ¢¤0(¾) = u(w(¾)), where w(¾) satis…es

u0(w)¾ = 1 or equivalently '0(u(w)) = ¾. This entails that ¢¤0(¾) = '0¡1(¾), and so

(28) '000(¢) > 0 () ¢¤000(¢) < 0 .

The latter brings Corollary 2 closer to Proposition 2 of the preceding section, which per-

tains to optimal auditing policies. The actual linkage will be spelled out in the upcoming

section.

5. Comparing audit-generated information systems

In order to use our general ranking criterion, we need a statement that precisely relates

the design of auditing policies to some stochastic ordering of the implied information

systems. This is the purpose of our last proposition, which proof can be found in the

Appendix.

Proposition 4: Let m(X) and bm(X ) be some auditing policies with the same in-

tensity. If for any x 2 ¡X we have that
Z x

InfX
mdF ¸

Z x

InfX
bmdF - the inequality being

strict for a set of positive measure, then L bm &3 Lm.

Thanks to this result, it is now possible to compare and rank any two contingent

auditing policies that have the same frequency. Let mUT (X), mLT (X), and m(X) rep-

resent respectively an upper-tailed, a lower-tailed, and a random auditing policy. The
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proposition says that

(29) LmUT &3 Lm &3 LmLT .

According to Corollary 2, the principal therefore prefers mUT when '000 < 0 and mLT

when '000 > 0, which is consistent with Remark 4(iii) and corroborates Proposition 2.

Furthermore, starting from a given auditing policy, the principal can enhance the

e¢ciency of her information system by auditing more intensively the highest (resp. the

lowest) values of signal X and less intensively the lowest (resp. the highest) ones when

'000 < 0 (resp. '000 > 0).

This result …nally hints at a procedure for setting up an optimal auditing policy (given,

of course, some auditing technology).

¢ First, determine the appropriate frequency of audits. This would involve standard

considerations of risk sharing and incentives, taking into account the unsunk cost of

auditing.

¢ Secondly, determine what instances of the signal X would trigger an audit. The

agent’s prudence (or the way his risk attitude changes when his wealth varies) would now

be relevant, and via the construction pointed out in Remark 5(ii) the principal might then

consider making the agent’s compensation more sensitive to the observables when these

are higher or lower.

6. Conclusion
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The literature on moral hazard has so far exclusively emphasized the tradeo¤ between

incentives and insurance. The above analysis indicates, however, that the design of op-

timal auditing policies must also take into account the agent’s prudence, for it amounts

…nally to examine mean and variance-preserving transformations of given information

systems.

This general insight could be useful in various context. In multi-tasking, for instance

(provided the current one-dimensional analysis can be extended to this context), submit-

ting hard-to-appraise activities to audits triggered by the observation of high performance

on the more staightforward ones might alleviate incentive problems (Sinclair-Desgagné

(1999)). Prudence and MVPT should also play a role in setting optimal contracts within

repeated principal-agent relationships (Rogerson (1985)) or in agencies submitted to back-

ground risk (Gollier and Pratt (1995)).

Université de Rouen and CREST-LEI, Rue des Saints-Pères, 75007 Paris, France.

CIRANO and Institut d’Économie Appliquée, HEC Montréal, Canada H3T 2A7.

Appendix

Proof of proposition 1: For the sake of this proof, let us abuse notation and

denote respectively ET(K) and M(K) the expected optimal transfer and the intensity

of an optimal auditing policy at a given e¤ort level a, when the unit cost of an audit is

K. At di¤erent cost levels K and K0, the principal’s objective function would be such
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that ET(K) +M (K)K · ET(K 0) +M (K)K 0. Similarly, reversing the respective roles

of K by K0 also gives ET(K 0) +M (K 0)K 0 · ET (K) +M (K0)K . The sum of these two

inequalities yields (K¡K 0)[M (K)¡M (K0)] · 0: Accordingly, the intensity of an optimal

audit must decrease with K.

To prove the second part of the proposition, observe that according to (6) the term

within brackets in (7) is precisely

EY [¢¤(¸ +¹LX +¹LY )] ¡ ¢¤(¸ + ¹LX) ¡K:

So we have that

EY [¢¤(¸+ ¹LX + ¹LY )] ¸ EY [¢(w(x); ¸+ ¹LX + ¹LY )] = ¢¤(¸+ ¹LX)

(the inequality being strict at an interior solution), and the bracketed term in (7) is always

nonnegative when K = 0.

Proof of proposition 2: Let uN(x) = u(w(x)) and uA(x; y) = u(s(x; y)). First,

equations (8) and (9) become respectively

'0(uN(x)) = ¸ +¹LX(x; a) and '0(uA(x; y)) = ¸ + ¹LX(x; a) + ¹LY (y; a);
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which implies that

(30) EY ['0(uA(x; Y ))] = ¸ + ¹LX(x;a) = '0(uN(x)):

On the other hand, applying the Envelope Theorem gives ¢¤0(¾) = u(w(¾)) when w(¾) =

Argmaxw¢(w; ¾); and it follows that the function G(¢) de…ned in (6) has a …rst-order

derivative at LX(x; a) which is given by

(31) G0(LX(x; a)) = EY [uA(x; Y )] ¡ uN(x):

The combination of (30) and (31) allows us now to conclude that:

² When '000(:) > 0 so '0 is convex, we have that '0(uN(x)) = EY ['0(uA(x; Y ))] >

'0(EY ([uA(x; Y )]). Consequently, uN(x) > EY [uA(x; Y )] andG(¢) is a decreasing function,

so the optimal auditing policy must be lower-tailed.

² When '000(:) < 0 so '0 is concave, conversely, '0(uN(x)) = EY ['0(uA(x; Y ))] <

'0(EY [uA(x; Y )]). In this case uN(x) < EY [uA(x; Y )] and G(z) increases with z, so the

optimal auditing policy is upper-tailed.

² When '000(:) = 0 so'0 is a linear function, …nally, then '0(uN(x)) = EY ['0(uA(x; Y ))] =

'0(EY [uA(x; Y )]): In this case, uN(x) = EY [uA(x; Y )] and the agent is indi¤erent between

being audited or not, so the principal will select any auditing policy that has the appro-

priate intensity.
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Proof of proposition 4: Denote as ¡L = [Inf (
fa
f
+
ga
g
); Sup(

fa
f
+
ga
g
)] the common

support of the distributions ©m and ©bm corresponding to the likelihood ratios Lm and

Lbm.

By de…nition, Lbm &3 Lm means that

­(À) =
Z

¡L

Z

¡L
[©m(z)¡ © bm(z)]±(t ¡ z)±(À ¡ t)dzdt ¸ 0

for any À 2 ¡, the inequality being strict on a subset of ¡L with positive measure. Applying

Fubini’s theorem and using a little algebra then yields

­(À) =
Z

¡L
[©m(z)¡ ©bm(z)]f

Z

¡L
±(t¡ z)±(À ¡ t)dtgdz

=
Z

¡L
[©m(z)¡ ©bm(z)]Max(À ¡ z; 0)dz:

Meanwhile, the expression for ©m(z) given by (16) gives:

©m(z)¡ ©bm(z) =
Z

¡X
(bm¡m)±(z ¡ LX)dF ¡

Z

¡X

Z

¡Y
(bm¡m)±(z ¡ LX ¡ LY )dFdG:

So we have that

­(À) = C ¡D , where

C =
Z

¡L

Z

¡X
Max(À ¡ z; 0)(bm¡m)±(z ¡ LX)dzdF and

D =
Z

¡L

Z

¡X

Z

¡Y
Max(À ¡ z; 0)(bm¡m)±(z ¡LX ¡ LY )dzdFdG .
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Invoking Fubini’s theorem again, the latter can be written as

C =
Z

¡X
( bm ¡m)f

Z

¡L
Max(À¡ z; 0)±(z ¡ LX)dzgdF

D =
Z

¡X

Z

¡Y
( bm¡m)f

Z

¡L
Max(À¡ z; 0)±(z ¡ LX ¡ LY )dzgdF dG:

And since
Z

z¸z
Max(À¡ z; 0)dz = (1=2)(Max(À¡ z; 0)2, ­(À) is …nally written as

­(À) = (1=2)f
Z

¡X
(bm¡m)[Max(À¡ LX ; 0)]2dF

¡
Z

¡X

Z

¡Y
(bm¡m)[Max(À¡ LX ¡ LY ; 0)]2dFdGg

= (1=2)
Z

¡X
(m¡ bm)ª(À¡ LX)dF ,(32)

where the function ª(¢) is de…ned as

(33) ª(t) = EY [Max(t¡ LY ; 0)2] ¡Max(t; 0)2:

Note that ª(¢) is a di¤erentiable function because the derivative ofMax(C; 0)2 exists and

is equal to 2Max(C; 0). Therefore,

ª0(t) = 2EY [Max(t ¡ LY ; 0)] ¡ 2Max(t; 0) ¸ 0;

which entails that ª(¢) is strictly increasing on ]Inf
ga
g
; Sup

ga
g
[ and is constant elsewhere.

In particular, ª0(0) > 0:
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The right-hand of (32) can now be integrated by parts, which yields

(34) ­(À) =
Z

¡X
f
Z x

InfX
(m(z)¡ bm(z))dF (z; a)gª0(º ¡ LX)(

@LX
@x

)dx .

We conclude that: (i) if
Z x

InfX
m(z)dF (z; a) ¸

Z x

InfX
bm(z)dF (z; a) for any x, then ­(À) ¸

0 , and (ii) if
Z x

InfX
m(z)dF (z; a) >

Z x

InfX
bm(z)dF (z; a) on some interval [c; d], then

letting À = LX(d; a) we get

­(À) ¸
Z d

c
f
Z x

InfX
(m(z) ¡ bm(z))dF (z; a)gª0(LX(d; a) ¡ LX(x; a))(

@LX
@x

)dx > 0

in a neighbourhood of LX(d; a): In both cases, if
Z x

InfX
m(z)dF (z; a) ¸

Z x

InfX
bm(z)dF (z; a)

with strict inequality on a subset of positive measure, then ­(À) ¸ 0, as claimed.
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