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Résumé/ Abstract

Nous considérons trois ensembl es de phénomeénes qui sont souvent — et séparément - discutés dans
lalittérature d’ économie financiere, a savoir la dépendance de la moyenne conditionnelle (ou I’ absence de
dépendance) dans les rendements d’ actifs, la dépendance (et donc prévisibilité) des signes de rendements
les volatilités des rendements d’ actifs. Nous montrons que ces phénomeénes sont étroitement interreliés et
nous explorons leurs relations en détail. Entre autres, nous montrons que : 1) la dépendance de lavolatilité
produit une dépendance du signe tant que les rendements attendus sont non nuls. On devrait par
conséguent s attendre a une dépendance du signe, étant donné la présence notoire de dépendance de
volatilité; 2) le résultat classique qui ne trouve que peu ou pas de dépendance de la moyenne
conditionnelle est parfaitement compatible avec un degré significatif de dépendance de signe et de
dépendance de volatilité. En particulier, la dépendance de signe n'implique pas une inefficacité du
marché; 3) Il est peu probable qu’ une analyse des autocorrélations de signes révéle une dépendance de
signe, parce que la nature de la dépendance du signe est fortement non linéaire; 4) il est également peu
probable que I’on retrouve une dépendance de signe dans des rendements a tres haute fréquence (par
exemple quotidiens) ou a tres basse fréquence (par exemple annuels). |l est plus probable qu’on la trouve
avec des horizons de rendements intermédiaires.

We consider three sets of phenomena that feature prominently — and separately — in the financial
economics literature: conditional mean dependence (or lack thereof) in asset returns, dependence (and
hence forecastability) in asset return signs with implications for market timing, and dependence (and
hence forecastability) in asset return volatilities. We show that they are very much interrelated, and we
explore the relationships in detail. Among other things, we show that: (1) Volatility dependence produces
sign dependence, so long as expected returns are nonzero. Hence one should expect sign dependence,
given the overwhelming evidence of volatility dependence. (2) The standard finding of little or no
conditional mean dependence is entirely consistent with a significant degree of sign dependence and
volatility dependence. In particular, sign dependence does not imply market inefficiency. (3) Sgn
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dependence is not likely to be found via analysis of sign autocorrelations, because the nature of sign
dependence is highly nonlinear. (4) Sgn dependence is not likely to be found in very high-frequency (e.g.,

daily) or very low-frequency (e.g., annual) returns. Instead, it is more likely to be found at intermediate
return horizons.

Mots-clés: prédiction des signes, direction de changement, timing de la volatilité, horizon
d’investissement

Keywords: Sign prediction, direction of change, volatility timing, investment horizon

JEL : G11, G14, C53



1. Introduction

We consider three sets of phenomena that feature prominently — and separately — in the financial
economics literature: conditional mean independence (and hence no forecastability) in asset returns,
dependence (and hence forecastability) in asset return signs with implications for market timing, and
dependence (and hence forecastahility) in asset return volatilities. We argue that they are very much
interrelated, forming a tangled and intriguing web, a full understanding of which leads to a deeper
understanding of the subtleties of financial market dynamics. Let usintroduce themin turn.

First, consider conditional mean independence, by which we mean that an asset return’s
conditional mean does not vary with the conditioning information set. Asset return forecasting is central
to active asset allocation. Short-run return forecasting, however, iswidely viewed as difficult, and
perhaps even impossible. This view stems from both introspection and observation. That is, financial
economic theory suggests that asset returns should not be easily forecast using readily-available
information and forecasting techniques, and a broad interpretation of four decades of empirical work
suggests that the data support the theory (e.g., Fama, 1970, 1991). Consequently, conditional mean
independence is reasonably viewed as a good working approximation to asset return dynamics.

Second, consider dependence and hence forecastability of asset return signs, and the implications
for market timing. The possibility of market timing focuses interest not on prediction of returns directly,
but rather on prediction of signs of returns, on the grounds that profitable trading strategies may result if
oneis successful at forecasting return signs, quite apart from whether one is successful at forecasting the
mean of returns. A well-known and classic example, even at the textbook level such as Levich (1998,
Chapter 8), involves foreign exchange trading. If, for example, the Y en/$ exchange rate is expected to
increase, reflecting expected depreciation of the Y en relative to the dollar and hence a negative expected
“return” on the Yen, one would sell Yen for Dollars, whether in the spot or derivatives markets.?

Positive profits may be made when the sign forecast is correct.® Interestingly, there is accumulating

! We emphasize the word “ approximation,” as small deviations from conditional mean
independence at short horizons are well-known (see for example Lo and MacKinlay, 1999), typically
emerging as very weak but nonzero serial correlation in high-frequency returns. As we discuss below,
the presence of time-varying risk premia would of course also imply some degree of conditional mean
predictability.

2 Generalizations to timing multiple asset classes, such as stock and bond markets, are immediate,
in which case one bases the allocation strategy on aforecast of the sign of the return spread.

3 We say “may” for anumber of reasons. First, of course, one must adjust for interest and other
costs. Second, and importantly, one may be led astray by focusing exclusively on sign, as one must also
consider the absolute magnitude of returns, and, for example, the timing of returns of very large



evidence that sign forecasting — again the key ingredient in market timing — can often be done with
surprising success. Relevant literature includes Breen, Glosten and Jagannathan (1989), Leitch and
Tanner (1991), Wagner, Shellans and Paul (1992), Pesaran and Timmermann (1995), Kuan and Liu
(1995), Larsen and Wozniak (1995), Womack (1996), Gencay (1998), Leung, Daouk and Chen (1999),
Elliott and Ito (1999), and White (2000), among others.

Finally, consider dependence and forecastability of asset return volatility. A huge literature
documents the notable dependence, and hence forecastability, of asset return volatility, with important
implications not only for asset allocation, but also for asset pricing and risk management. Bollerslev,
Chou and Kroner (1992) provide afine review of contributions in the GARCH tradition, while Ghysels,
Harvey and Renault (1996) survey the stochastic volatility literature, Franses and van Dijk (2000) survey
models of regime-switching volatility, and Andersen, Bollerslev and Diebold (2002) survey models of
realized volatility. Note that conditional volatility dependence—in sharp contrast to conditional mean
dependence—need not be traded away in efficient markets. Thus evidence of conditional volatility
dependence is much more prevalent and much less controversial than is evidence of conditional mean
dependence. Interesting extensions include models of time-variation in higher-ordered conditional
moments, such as the conditional skewness models of Harvey and Siddique (2000) and the conditional
kurtosis models of Hansen (1994). The recent literature also contains intriguing theoretical work
explaining the empirical phenomena, such as Brock and Hommes (1997) and de Fontnouvelle (2000).

In this paper we characterize in detail the relationships among the three phenomena and three
literatures discussed briefly above: asset return conditional mean independence, sign dependence, and
conditional variance dependence. It iswell known that conditional mean independence and conditional
variance dependence are entirely compatible, as occurs for example in a pure GARCH process. Much
lessis known, however, about sign dependence in general, and in particular about the relationship of sign
dependence to conditional mean independence and volatility dependence. Hence we focus throughout on
sign dependence. Among other things, we show that:

(1) Volatility dependence produces sign dependence, so long as expected returns are nonzero.

Hence one should expect sign dependence, given the overwhelming evidence of
volatility dependence.

(2) The standard finding of little or no conditional mean dependence is entirely consistent with a

significant degree of sign dependence and volatility dependence. In particular, sign

magnitude. For additional discussion, see Cumby and Modest (1987).
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dependence does not imply market inefficiency.

(3) Sign dependenceisnot likely to be found via analysis of sign autocorrelations, because the

nature of sign dependence is highly nonlinear.

(4) Sign dependenceisnot likely to be found in high-frequency (e.g., daily) or low-frequency

(e.g., annual) returns. Instead, it is more likely at intermediate return horizons of two or
three months.
We derive the theoretical resultsin a general setting, and we illustrate them using a popular parametric
model of asset prices and returns.

We proceed asfollows. In sections 2 and 3 we build intuition by sketching the main resultsin
simple contexts, focusing primarily on the conditionally Gaussian case. In section 2 we discuss the basic
framework, volatility dynamics as a source of sign dynamics, and implications for market efficiency, and
in section 3 we present more general results allowing for unconditional and conditional skewness and
kurtosis. Next, in section 4 we focus in greater depth on sign dependence, and we provide basic results
on sign realizations, sign forecasts, and the relation between the two. In section 5 we perform a detailed
simulation experiment, which not only illustrates our basic results but also extends them significantly, by
characterizing the nature of sign forecastability as afunction of forecast horizon. In section 6 we offer
concluding remarks and discuss directions for future work, including methods of exploiting sign
forecastability for improved asset allocation.

2. Conditional M ean Dependence, Sign Dependence, and Volatility Dependence: Basic Results

Here we explore the links between conditional mean dependence, sign dependence, and volatility
dependence. We have used the terms repeatedly but thus far not defined them precisely, relying instead
on readers’ intuition, so let us begin with some precise definitions. First, we will say that areturn series
R,,, displays conditional mean dependence (conditional mean dynamics, conditional mean
forecastability, conditional mean predictability) if E(R,,,|Q,) isanonconstant function of Q,. Second,
we will say that R,,, displays sign dependence (sign dynamics, sign forecastability, sign predictability) if
the return sign indicator series I(R,,,>0) displays conditional mean dependence; that is, if
E(I(R..,>0) | ©,) isanonconstant function of ,.* Finaly, wewill say that R, displays conditional
variance dependence (conditional variance dynamics, conditional variance forecastability, conditional

variance predictability, volatility dependence, volatility dynamics, volatility forecastability, volatility

* Equivalently, R, , displays sign dependence if the conditional probability of a positive return,
Pr(R,.,>0]€), isanonconstant function of Q,, because Pr(R,,>0|Q) = E(I(R,,,)>0/|Q).
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predictability) if Gt2+1|t =Var(R,,,|Q) isanonconstant function of €.
Having made the requisite definitions, we now proceed to characterize the relationship between
sign and volatility dynamics, and the implications of sign dynamics for market efficiency.

2.1 Sign Dynamics Follow from Volatility Dynamics

Consider the prevalence of volatility dynamics in high-frequency asset returns, and the positive
expected returns earned on risky assets. To take avery simple but illuminating example, assume the

returns on a generic risky asset are distributed as

Rl ~ N, o), H>0,

and therefore display conditional mean independence and conditional variance dependence. The

Gt+1|[

where ®(¢) isthe N(0,1) c.d.f. Notice that although the distribution is symmetric around the conditional

probability of a positivereturnis

Rt+]_7p' < —u

G

Pr(R.,>0) =1 - Pr(R,,<0) = 1 - Pr

t-1t  Oteap

mean, and the conditional mean is constant by assumption, the sign of the return is nevertheless
forecastable, because the probability of apositive return istime-varying (and above 0.5, if u>0). As
volatility moves, so too does the probability of apositivereturn: the higher the volatility, the lower the
probability of a positive return, asillustrated in Figure 1.

The surprising result that the sign of the return is forecastable even though the conditional mean
is constant hinges interestingly on the interaction of a non-zero mean return and non-constant volatility.
A zero mean would render the sign unforecastable, as would constant volatility; hence the tradition in
financial econometrics of removing unconditional means and working with zero-mean series disguises
sign forecastability.®

Our setup above was intentionally simple, but it is easy to see that the results are maintained
under a number of interesting variations. To take just one example, note that if returns are conditionally

non-Gaussian (e.g., conditionally skewed), the result that volatility forecastability implies sign

® The key link between sign forecastability and volatility dynamics parallels the literature on
optimal prediction under asymmetric loss. In sign forecasting, volatility dynamics interact with a
nonzero mean to produce time variation in the probability of a positive return and hence sign
forecastability. Inforecasting under asymmetric loss, asin Granger (1969) and Christoffersen and
Diebold (1996, 1997), volatility dynamics similarly produce time variation in the optimal point forecast
of aseries with a constant mean.
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forecastability still holds and in fact is significantly enriched, as we will show in subsequent detail. In

Rak __“J -1 - F[ __“]
Opap Steag Ot.1pt

whereF(¢) denotestherelevant c.d.f. Hence the sign of returnsis still forecastable so long as the mean

particular,

Pr(R.,>0) = 1 - Pr(R,<0) = 1 - Px

return is non-zero and volatility is dynamic.

One might naturally wonder whether sign forecastability implies violation of weak market
efficiency, in the sense of conditional mean dependence, in which case returns would be forecastable
based upon their own past. The answer is of course no, as the above example of a process displaying
both conditional mean independence and sign forecastability made clear. In the next sub-section, we
elaborate on this important point.

2.2 Return Sign Forecastability is Consistent with Market Efficiency

Market timing is clearly of interest for active asset allocation, and recent sophisticated empirical
work suggests that market timing can be done. Successful market timing requires sign forecastability,
and if return signs are forecastable then returns must be somehow dependent. When sign forecastability
isfound empirically, it is tempting to conjecture that it is driven by subtle nonlinear dependencein
conditional mean dynamics, which would be missed in standard analyses of (linear) dependence, such as
those based on return autocorrel ations.

The key insight, however, is that although sign dynamics could be due to conditional mean
dependence, they need not be. In particular, we have demonstrated that volatility dynamics produce sign
dynamics, so that one should expect sign dynamics in asset returns, given the overwhelming evidence of
volatility dynamics, even when returns are conditional mean independent. The upshot is that the standard
finding of little or no conditional mean dynamicsis entirely consistent with a significant degree of sign
dynamics. Furthermore, sign dynamics do not imply violation of market efficiency in the mean-squared-
error forecastability sense. We realize that general equilibrium definitions of market efficiency, which
are different from the M SE-based definition used here, can be consistent with some degree of conditional

mean forecastability, for example over the business cycle.® One should of course not be surprised to find

® For adiscussion of thisand of return forecastability more generally, see, Balvers, Cosimano
and McDonald (1990), Ferson and Harvey (1993), Glosten, Jaganathan, and Runkle (1993), Jegadeesh
(1990), Jensen (1978), Mankiw, Romer, and Shapiro (1991), Patelis (1997), Sentana and Wadhwani
(1991), and Sweeney (1986).
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evidence of sign prediction if the conditional mean is predictable. Thus, definitions of market efficiency
which allow, for example, for the possibility of time-varying risk-premiawill generally lead to sign
predictability. We deliberately restrict ourselves to working with return processes that are conditional
mean independent and therefore satisfy a simple version of market efficiency, yet they are sign
predictable. Our purposeisto assessif volatility dynamics alone can generate magnitudes of sign
predictability similar to those observed empirically.

In closing this section, we note that it isinteresting to interpret the phenomena at hand through
the decomposition,

R = Sgn e (Rl

Aswe have discussed, both of the right-hand-side components of returns are forecastable, yet the | eft-
had-side variable, returns themselves, are approximately unforecastable.’
3. Allowingfor (Potentially Time-Varying) Conditional Skewness and Kurtosis

In the previous section we focused primarily on conditionally Gaussian asset return processes,
for which sign prediction is driven by atime-varying conditional variance interacting with a constant, but
nonzero, conditional mean. We also asserted, however, that the link between volatility forecastability
and sign forecastability remains intact even in conditionally non-Gaussian environments, and in fact is
significantly enriched. Here we defend that assertion by ng the potential impact of time-varying
higher-ordered conditional moments.

Once the assumption of conditional normality is discarded, one is faced with choosing an
acceptable alternative among countless possibilities. Instead of choosing a particular parametric
distribution, we work with the Gram-Charlier expansion, which can be viewed as an approximation to

any density with nontrivial higher-ordered moments. First define standardized returns as

and assume they are approximately distributed according to the pdf

"Thisis an example of anonlinear “common feature,” in the terminology of Engle and K ozicki
(1993): signs are conditional mean dependent and absolute returns are conditional mean dependent, yet
their product is conditional mean independent.

-6



1 1
leIt(Z) = (P(Z) - 73,t+1|t§D3(P(Z) + Y4,t+l|tZD4(P(Z)1

where @(x) is the standard normal pdf, D' isthej’ th derivative, and the third and fourth conditional

moments are defined in the usual way as

_ E'[(R[+1_IJ')3
Yapp = — 5
Gt+l|[
and
4
_ E'[(Rt+1_u)
Yapg = — 5~ 3
Gt+1|[

The conditional c.d.f. of standardized returnsis

1 1
Ft+1|t(z) = (D(Z) - Y3,t+1|t§D2(P(Z) * y4,t+1|tZD3(P(Z)'

Notice that, because
Do(2) = -z9(2)
D?%p(2) = (z°-1)¢(2)
D3%(2) = (z°-32)¢(2),

we have:

Tar. Yar.
Fou@ = ©@ - o2 %(2271) + %”‘(23732) .

In general, the probability of a positive return is equivalent to the probability of the standardized return

being bigger than - H/thlt; hence the probability of a positivereturnis



Vateap 2 Va1t 3
! (H2/0t+1|f1) * T(7u3/6t+1|t+3u/6t+1|t) ,

1- Ft+1|t(7p-/ct+1|t) =1- ‘D(*Il/%ln) + ®(7u/6t+1n) 3

which istime-varying for nonzero 1, just as it was under conditional normality, so long as one or more of
the second, third and fourth conditional moments are time-varying.
Importantly, sign forecastability arises even in the absence of conditional variance dynamics, in

which case the probability of apositivereturnis

1 FyWo) = 1 - ©( o) + o Wo)| - (o> 1) + (o™ +3uo)|.

which isstill time-varying for nonzero 1 so long as either the third or fourth conditional moment istime-
varying. Moreover, evenif [ is zero, and regardless of whether volatility dynamics are present, sign
forecastability arises so long as conditional skewness dynamics are present. In that case, the probability

of a positive return becomes

1-F0 =12 - Jaew _qpp - 0.06657,,,,,,

V23!

which istime-varying as long as conditional skewness dynamics are present. Notice that a negative
skewness implies that the probability of apositive return is greater than 0.5.
4. Sign Forecasts, Sign Realizations, and the Link

Here we examine a number of issues relevant to the quantification of sign forecastability. How,
if at all, doesthe sign forecast derivative with respect to volatility vary as afunction of volatility, and in
what volatility region isit maximized? What is the correlation between sign forecasts and realizations,
and how, if at all, isthe correlation related to the volatility of sign forecasts? What is the autocorrelation
structure of sign realizations, and isit likely to be useful for identifying sign forecastability?
4.1 Mesasuring Sign forecastability I: The Responsiveness of the Sign Forecast to Changesin Volatility

Consider an obvious measure of probability responsiveness to changes in volatility,



)

06 1y

The motivation behind this measure isthat in our simplest setup, we achieve probability forecastability
only from volatility dynamics. A key issue is how much the probability forecast changes when the

volatility changes. The % measure captures this. In general we have

2 )
Gt+l|t

where f(s) isthe pdf of the standardized errors. In the Gaussian case,

Sraap Gt2+1|t

In Figure 2, we work in a Gaussian situation and plot the values of the % measure for different

R = f[—‘“

Gt+l|t

R = -9

volatilities, keeping the mean at ten percent. The responsiveness has an interior optimum and is thus not
monotonically decreasing in the standard deviation. This makes sense: for tiny &, the conditional
probability can deviate little from 1, and hence responsivenessistiny. Similarly, for huge , the
conditional probability can deviate little from %%, and hence responsivenessis again tiny. Intermediate
values of ¢, however, can produce greater responsiveness. Notice that the probability of a positive return
is always decreasing (the derivative is always negative) in the conditional standard deviation, but one can
show that the responsiveness is the highest when Cpap = wy2 = 0.0707.

4.2 Mesasuring Sign Forecastability II: The Correlation Between Sign Forecasts and Realizations

In the previous subsection we considered the issue of responsiveness of probability forecasts of
return signs to movements in the underlying volatility. If sign forecasts don't respond much to volatility
movements, then we could not hope for close agreement between sign forecasts and realizations. This
brings up the more general issue of how one might quantify such agreement (or lack thereof); hencein
this subsection we consider aspects of the correlation between sign forecasts and realizations. This
effectively amounts to something of an R? measure of sign forecastability.®

To characterize the correlation between sign forecasts and realizations, first notice that

COV(Itq’ Pt+1|t) = E[|t+1pt+1|t] - E[|t+1] E[Pt+1|t] = E[|t+1pt+1|t] - Pza

8 For an interesting discussion of R2-type measuresin binary regressions, see Estrella (1998).
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where P is the unconditional probability of a positive return and |,,, isthe indicator variable of an ex-post
realized positive return. Second, use the law of iterated expectations to get
E[It+1pt+l|t] = E[E{ It+1Pt+1|t}] = E[E{l,.;} Pt+1|t] - E[Pt2+1|t]'
Hence we have
COV(It+l’Pt+1|t) = E[Ptillt] - P? = Var(PHlIt),

so the covariance between the forecast and the realization is equal to the variance of the forecast.

Converting to correlation, we can write

Var(Puln) _ Std(Pt+1|t)

Corr(l,,,P.qp) = S, ) S, ) = (1)

Notice that the correlation between sign forecasts and realizations depends only on the standard deviation
of the forecast, which of course will depend on the particular return process at hand. In spite of its
generality, the correlation expression furnishes considerable insight. A high standard deviation of the
conditional probability forecast, which could arise from a high variance of the conditional variance, will
increase the forecastability of the return sign.

4.3 On the Difficulty of Detecting Sign Forecastability: The Autocorrelation of Sign Realizations

Turning attention now to the first-order autocovariance of the indicator sequence, we can write
Cov(l,.,,1) = E[l_,] - E[l,JE[I] = E[l_,I] - P2
As before we can use the law of iterated expectations to get
E[l...1] = E[E(,.,1D] = E[lLE(,)] = E[ItPMIt].
Hence
Cov[l,.,l] = E[P, 1] - P2
Converting now to autocorrelations, we have

) E[P“lnlt]—Pz ) E[P“lnlt]—Pz
Corr(l,.,1) = Sdl_)sdy T PAR )

Although this expression again depends on the particular return process at hand, it is useful in calculating

-10-



an upper bound on the autocorrelation. As an intermediate step, consider the correlation between today’ s

sign realization and today’ s forecast of tomorrow’s sign. We have

E[Pt+1|[|t] - E[Pt+1|[] E[It] _ E[Pt+1|[|t] - P2
Std(P,. ) Std(l) Sd(P, ) VPA-P)

Substituting (3) into the expression for the autocorrelation of the indicator sequence (2), we get

Corr(P, 4 1) = (3)

Corr(PMIt,It) Std(Pmn)

PP

Substituting the expression for the correlation between the ex-ante sign forecast and the ex-post sign-

Corr(lm, It) =

realization (1), we have:
Corr(l,, 1) = Corr(PHn, li. 1) Corr(PMIt, ). (4)

If all three correlationsin (4) are positive and bounded away from one (which is a realistic assumption),

we obtain

Corr(l,, 1) < Corr(PMF,IM). (5)

t+1?

Intuitively, the optimal time-t forecast, P,,,;, has a higher correlation with the time t+1 realization than
anything else observed at timet, including the timet realization itself. The lower the correlation between
today’ s sign and today’ s forecast of tomorrow’ s sign, the lower the autocorrelation in the sign.
Conversely, notice that if the sign forecast were linear in the current realization, then the correlation
between today’ s sign and today’ s forecast of tomorrow’ s sign would be one, and the autocorrelation
would coincide with the correlation between the ex-ante predictor and ex-post realization. Thusit isthe
nonlinearity in the dynamic process of the indicator sequence that |owers the autocorrelation relative to
the cross correlation between the ex-ante predictor and the ex-post realization.

The upshot for empirical work is clear: sign forecastability will generally be difficult to detect
from sign autocorrelations, which can be small even when sign forecastability is large.
5. Sign Forecasting for Various Data Frequencies and Forecast Horizons

We have shown that return sign forecastability arises from the interaction of nonzero expected

returns and volatility forecastability. As either expected returns approach zero or volatility

-11-



forecastability approaches zero, sign forecastability approaches zero.” Hence one does not expect strong
sign forecastability for very high frequency returns such as daily, despite their high volatility
forecastability, because expected daily returns are negligible. Similarly, one does not expect strong sign
forecastability for very low frequency returns such as annual, despite the high expected returns, because
annual return volatility forecastability is negligible. One might therefore conjecture that sign
forecastability will be highest at some intermediate horizon between the shortest and longest extremes.
In this section, we evaluate this conjecture under realistic stochastic processes for returns.

When analyzing sign dynamics at various horizons, oneis quickly faced with the challenge that
virtually no discrete-time dynamic model with time-varying volatility is closed in distribution under
increasing horizons.® To circumvent this problem, we work with a continuous-time stochastic volatility
model, focusing in particular on the convenient and popular model of Heston (1993).

Working with the continuous-time stochastic volatility model has the added benefit that temporal
aggregation and increasing horizons are interchangeable. We simply assume that the current volatility is
observed at some frequency, say monthly, and cal culate the one-month ahead sign prediction. Thiscan
be thought of as either working with monthly returns, or working with a one-month horizon, asin either
case only the instantaneous volatility is needed.

5.1 Simulation Design

The stochastic volatility model parsimoniously captures many of the stylized facts of asset
returns, including skewness, leptokurtosis and volatility persistence. Furthermore, the stochastic
volatility model has the great advantage that the conditional density can be easily calculated at any
forecast horizon. For al of these reasons, the stochastic volatility model has become a standard
benchmark in empirical asset pricing; it has been estimated by Andersen, Benzoni and Lund (2000),
Bakshi, Cao and Chen (1997), Benzoni (1999), Chernov, Gallant, Ghysels and Tauchen (2001), Chernov
and Ghysels (2000), Eraker, Johannes, and Polson (2000), and Pan (2000), among others.

The stochastic volatility processis abivariate diffusion defined as

9 Of course, higher-ordered conditional moment dynamics can contribute to sign predictability as
well.

1% For penetrating insight into the difficulties involved in the temporal aggregation of discrete-
time volatility models, see Meddahi and Renault (2000). Discrete-time volatility models with convenient
temporal aggregation properties could potentially be obtained using the results of Meddahi (2001),
Darolles, Gourieroux, and Jasiak (2001), or Heston and Nandi (2000).
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dS(t) = uSdt + o(t)Sdz,

do?(t) = k(6 -o(t))dt + no(t) dz,

where S(t) is the asset price process and c%(t) is the variance process, and where corr(dz;,dz,) = p. The
expected instantaneous rate of return is denoted by |, the long run variance by 6, the speed of adjustment
of the variance by «, and the volatility of volatility by . Keeping the parameter values such that n?<26«
ensures that the continuous-time variance process stays strictly positive amost surely.

Using Ito’slemma, the stochastic volatility process can conveniently be written in terms of the

log asset price, x(t), as
dx(t) = (M-c?(t)/2)dt + o(t)dz,

do?(t) = x(0-c?(t))dt + no(t) dz,.

Notice that although the instantaneous drift is simply a constant, the continuously compounded return has
adight time-variation from the Ito-transformation.

The probability of an increase in the asset price between timet and t+t, or equivalently, the
probability of a positive return during [t, t+t], can be calculated using the inverse characteristic function

technique.'* In particular,

P

tetjt

= PI’(X(t‘*'T)ZX(t) | (1) =X, Gz(t):c _ % f %exp( |\|/X) f(x, 62T, \V)
0

where f(x, 62, ; y) isthe characteristic function for horizon t, izﬁ , Re[+] takesthe real part of a

complex number, and the characteristic function is

f(x,627y) = explC(r,y) + D(t,y)6® + iyx),

1 Asin the Gaussian case, the computation of the sign probability requires numerical integration,
but the well-behaved integrand renders the integration straightforward.
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where

1-g

C(t,y) = Hyit + K—S{(Kpn\yi +d)r - 2log M}}

n

2 1 -gexp(dr)

D(r, y) - (K—pn\yi +d] ( 1 -exp(dr) ]
n

_ x-pnyi +d
K-pnyi -d

and

d = y(pnyi —x)? + n’(yi +y?).

In the simulations below, we generate prices at 5-minute intervals and assume 24-hour trading
with 250 trading days per year. For the purpose of sign prediction, we proceed by discarding the intra-
day observations and take daily to be the highest frequency of interest. We calibrate the parametersto
values estimated in the empirical papers cited above. Our benchmark values are u=0.10, k=2,

6 =0.015, n=0.15 and p = -0.50, which imply a daily mean of about 0.037%, a daily unconditional
standard deviation of 0.77%, an unconditional skewness of about -0.1, and an unconditional excess
kurtosis of about 1. The annualized mean reversion parameter k = 2 implies a daily persistence of about
1-2/250 = .992 in a standard GARCH(1,1) model. Notice also that the parameters satisfy the n?<26x
condition.

In Figure 3 we plot the sign forecast from a typical sample path of the simulated process. We
show daily, weekly, monthly and annual conditional as well as unconditional sign probabilities. Notice
the increase in the unconditional probability of a positive return aswell as the decrease in the persistence
of the conditional probability of a positive return astimeis aggregated. In Figure 4 we plot the
unconditional probability of a positive return across horizons.

5.2 Simulation Results

Figure 5 supports our conjecture that sign dynamics will be most prevalent at intermediate
frequencies. The correlation between the ex ante sign forecast and the ex post sign realization is highest

at around the 2-3 month frequency (corresponding to 40-60 trading days). The corréelation is quite low at
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the highest frequencies and tapers off again astime is aggregated to the annual frequency.

Figure 6 shows the correlation between the ex ante sign forecast and the ex post sign realization
when the drift of the instantaneous rate of return, |, is 0.05 and zero, but all other parameters are kept at
their benchmark values. Although signs are much less forecastable when [ is zero, we still get some
forecastability at intermediate horizons, stemming from a non-zero leverage effect, p, which interacts
with the volatility dynamics.

It isinteresting to note that, even when both drift and leverage are zero, thereis asmall degree of
sign forecastability as the horizon increases, coming from the Ito term, -c?(t)/2, in the drift of the log
price process.*? By defining dS(t)/S(t) to have a symmetric distribution, an asymmetry is automatically

introduced in the distribution of S(t+t). Alternatively, we could have assumed a stock price process of

dS(t) - (u+o%(t)/2)Sdt + o(t) Sdz,

do?(t) = k(0-c?(t))dt + no(t) dz,,

which would have eliminated sign forecastability when p=p = 0.

Figure 7 shows the impact of increasing « to 10 and thereby |lowering the volatility persistence.
A « of 10 corresponds to a daily volatility persistence of about 0.96.

Figure 8 shows ancther important result, also suggested but not conclusively established by our
earlier analytic work: the simple autocorrelation of the sign realization isrelatively small at all horizons.
This contrasts with the correlation between the signs and their forecasts. The magnitude of the
autocorrelation function implies that the search for asimple linear forecast of signs from their own past is
not likely to be fruitful. Figure 9 compares the correlation between the ex-ante probability forecasts and
the ex-post realizations with the autocorrel ations of the realization.

It appears that the nonlinearity of the volatility-based forecast renders the linear forecastability in
the Markov chain small. In our setup, having alow conditional varianceis key for getting a high
probability of a positive return, regardless of the sign of yesterday’ sreturn. In asymmetric volatility
model, ceteris paribus, both small positive and small negative returns (in absolute value) will generate a
smaller conditional variance and thus a higher probability of a positive return tomorrow, whereas alarge

positive return (and alarge negative return) will increase the conditional volatility and thus lower the

12 Meddahi and Renault (2000) find similar leverage effects arising under aggregation even if the
innovations are uncorrel ated.
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probability of a positive return.™®

Keeping in mind the standard practice in the literature of specifying Probit or Logit regressions
in search of sign forecasts, the above discussion leads one to the following question: What istheimplied
Probit/Logit regression on an indicator variable of the sign of returns that one should run to detect sign
dynamics? It isclear that the regressor should be a nonlinear function of conditional variance, and more
If,

moreover, volatility is afunction of predetermined variables (e.g., current and past absolute returns,

specifically, our earlier analysis suggests that the obvious regressor is an estimate of p/o,,, .
volume, day of week, etc.), then Probit/Logit models which include these variables should show some
significance in explaining the sign. Note well, in particular, that finding a significant explanatory
variable in a Probit regression on return signs could simply be suggestive that the variable used is
correlated with the volatility of the asset return; it does not necessarily imply linear or nonlinear
conditional-mean return dependence and is entirely consistent with market efficiency.
5.5 Extensions

The simulation analysis above was much more than a mere illustration of various analytic results.
Indeed, the nonlinearity associated with sign dynamics makes full analytic results very difficult to obtain.
Hence, extending the simulation analysis to include richer data-generating processesis of interest.
Obvious extensions include:

(1) Multifactor models with possible jumps. We are currently working with one of the simplest
dynamic one-factor volatility specifications available, but we could easily entertain the
possibilities of multiple volatility factors and jumps as in Alizadeh, Brandt and Diebold
(2002) and Chernov, Gallant, Ghysels and Tauchen (2001).

(2) Long-memory models. So far we have worked only with short-memory volatility models,
whereas there is ample evidence of long memory dynamicsin asset return volatility (e.g.,
Andersen, Bollerslev, Diebold and Ebens, 2001, Andersen, Bollerslev, Diebold and
Labys, 2001a and 2001b). Extensionsto long-memory volatility models could of course
easily be made.

(3) Heteroskewness and heterokurtosis. El Babsiri and Zakoian (2001) argue for aricher class
of GARCH models that incorporates conditional heteroskewness and heterokurtosis. As

shown in Section 4, these models would have important implications for sign dynamics

13 Note that nonlinear models, such asthe neural networks considered by Kuan and Liu (1995),
might be useful for sign forecasting.
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aswell.

(4) Multivariate models. We have confined attention to the univariate case, but portfolio
management decisions are inherently multivariate in nature, and an investigation of
multivariate interaction among return signs might provide useful insight.

Although we have not pursued these extensions here, they would be interesting to explore in future work.
6. Concluding Remarks

We have shown that, given the widely-accepted statistical properties of speculative prices, one
should not be surprised to find forecastability in the sign of returns. Under the realistic assumptions of a
constant but non-zero drift, and persistent but mean-reverting volatility dynamics, we show that sign
forecastability is to be expected and does not violate traditional notions of market efficiency. We also
consider higher-order conditional moment dynamics, showing for example that time-varying skewness
can yield sign forecastability even with zero drift and no volatility dynamics.

We show analytically that the probability forecast of a positive return is most sensitive to
changesin volatility when volatility is a an intermediate level. In exceptionally tranquil times, the sign
outcome s virtually certain (it will match the sign of the drift), and in exceptionally volatile times, the
sign outcome is unpredictable and the conditional probability forecast will simply be 0.5.

Finally, we show in arealistically calibrated simulation exercise that sign forecastability is
strongest at horizons of two or three months. At short horizons the drift will be close to zero, and at long
horizons volatility dynamics are largely absent; thus at neither end of the spectrum will one find sign
forecastability. But at intermediate horizons, sign forecastability can be quite high. Because the sign
forecastability arises from volatility dynamics, it is of anonlinear nature, and a simple linear
investigation of the autocorrelation of the signsis unlikely to reveal sign forecastability eveniif itis
present.

L et us conclude with a brief discussion of a promising direction for future research: the
exploitation of sign forecastability for improved portfolio management. Preliminary results indicate that
the probability of apositive portfolio return can be significantly increased by exploiting the volatility
dynamicsin individual securities, even when assuming a constant, but non-zero, mean. One can
essentially time the market by exploiting conditional variance rather than conditional mean dynamics, as
in Fleming, Kirby and Ostdiek (20013, 2001b).** Volatility dynamics could also be exploitable in safety-

14 Earlier work on market timing based on conditional mean dynamics includes Merton (1981),
Henriksson and Merton (1981), Cumby and Modest (1987), and Whitelaw (1997).
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first problems, asin Roy (1952), Bawa (1978), and Hagigi and Kluger (1987). One could progress
significantly, moreover, by incorporating skewness and kurtosis dynamics, using the methods of El
Babsiri and Zakoian (2001). Such *moment timing” will require evaluation measures more widely

applicable than, say, simple Sharpe ratios, such as Stutzer’s (2001) portfolio performance index.
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Figurel
The Probability of a Positive Return Depends on Volatility
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Notesto figure: We show two Gaussian return distributions, each with a mean of ten percent. Thefirst
has a standard deviation of five percent and a corresponding probability of positivity of 98 percent (the
areato the right of zero under the peaked function). The second has a standard deviation of fifteen
percent and a corresponding probability of positivity of only seventy-five percent (the areato the right of
zero under the flatter function).
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Figure?2
First Derivative of the Probability Forecast
with Respect to the Standard Deviation
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Notesto figure: We plot 3t, the derivative of the probability of a positive return as a function of return
volatility. We assume Gaussian returns with a mean of 0.10.
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Figure 3
Conditional Probability of a Positive Sign at Various Horizons
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Notesto figure: We simulate asset prices from the stochastic volatility model parameterized as

dS(t) -0.10Sdt + o(t)Sdz,
do(t) = 2(0.015-c2(t))dlt + 0.156(t)dz, ,

with corr(dz,;,dz,) = -0.5. Seetext for details. We then cal culate the conditional probability of apositive
return at daily, weekly, monthly and annual horizons. The horizontal line in each subplot denotes the
unconditional probability of a positive return.
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Figure4
Unconditional Probability of a Positive Return Across Horizons
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Notesto figure: We simulate asset prices from the stochastic volatility model parameterized as
dS(t) =0.10Sdt +o(t)Sdz,
do?(t) = 2(0.015-0%(t))dt + 0.150(t)dz, ,

with corr(dz,,dz,) = -0.5. Seetext for details. We then calculate the unconditional probability of a
positive return at horizons ranging from one through 250 trading days (one year). We calculate the
unconditional probabilities as simple averages of conditional probabilities, which we calculate using the
inverse characteristic function technique described in the text.
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Figure5b
Correlation Between Sign Forecasts and Realizations
Various Horizons, Benchmark Parameters
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Notesto figure: We simulate asset prices from the stochastic volatility model parameterized as

dS(t) -0.10Sdt + o(t)Sdz,
do(t) = 2(0.015-c2(t))dlt + 0.150(t)dz, ,

with corr(dz,;,dz,) = -0.5. We then calculate the ex ante conditional probability of a positive return as
well asthe ex post return sign realization at non-overlapping horizons ranging from one to 250 trading
days (one year). We calculate the sample correlation between the forecast and the realization across a
large number of realizations, making use of the quasi-analytic resultsin the text.
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Figure6
Correlation between Sign Forecasts and Realizations
Various Horizons, Small Return Drift
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Notesto figure: We simulate asset prices from the stochastic volatility model

dS(t) = pSdt + o(t)Sdz,
do¥(t) - 2(0.015-02(t))dt + 0.150(t)dz, ,

with corr(dz,,dz,) = -0.5, with drift of 0.05 (top line) and 0.00 (bottom line). Seetext for details. We
then calculate the ex ante conditional probability of a positive return as well as the ex post return sign
realization at non-overlapping horizons ranging from one to 250 trading days (one year). We calculate
the sample correlation between the forecast and the realization across alarge number of realizations,
making use of the quasi-analytic resultsin the text.
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Figure7
Correlation between Sign Forecast and Realization
Various Horizons, Rapid Reversion of Volatility to its Mean
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We simulate asset prices from the stochastic volatility model parameterized as

dS(t) -0.10Sdt + o(t)Sdz,
do(t) =10(0.015-%(t))dlt + 0.150(t)dz, ,

with corr(dz,;,dz,) = -0.5. We then calculate the ex ante conditional probability of a positive return as
well asthe ex post return sign realization at non-overlapping horizons ranging from one to 250 trading
days (one year). We calculate the sample correlation between the forecast and the realization using a
large number of realizations, making use of the quasi-analytic result in the text.
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Figure8
First Autocorrelation of Return Signs
Various Horizons, Benchmark Parameters
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Notesto figure: We simulate asset prices from the stochastic volatility model parameterized as

dS(t) -0.10Sdt + o(t)Sdz,
do(t) = 2(0.015-c2(t))dt + 0.150(t)dz, ,

with corr(dz,;,dz,) = -0.5. We then construct an indicator sequence of return signs for each horizon. We
calculate the sample autocorrel ation from along simulated sequence of returns, using the quasi-analytic
result in the text.
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Figure9
Correlation between Sign Forecast and Realization
and First Autocorrelation of Return Signs
Various Horizons, Benchmark Parameters
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Notesto figure: The correlation between the sign forecast and realization is asin Figure 5 and the first
autocorrelation of the sign sequenceisasin Figure 8.
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