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Confidence Regions for Calibrated Parameters in
Computable General Equilibrium Models*

Touhami Abdelkhalek†, Jean-Marie Dufour‡

Résumé / Abstract

Nous considérons le problème de la prise en compte de l’incertitude sur les
paramètres calibrés de modèles calculables d’équilibre général (MCEG) en
construisant des régions (ou des intervalles) de confiance pour ces paramètres.
Nous étudions en détail deux méthodes qui permettent de ce faire. La première est
une extension des travaux de Abdelkhalek et Dufour (1998) et repose sur une
technique de projection qui permet de construire des régions de confiance pour les
paramètres calibrés à partir de régions de confiance pour les paramètres libres
d’un MCEG déterministe. Nous discutons en détail comment cette approche peut
être appliquée aux paramètres d’une fonction CES (de type Armington) d’usage
fréquent dans les MCEG et nous l’illustrons sur des modèles de l’économie
marocaine. La seconde méthode permet de dépasser le cadre déterministe usuel
des MCEG en ajoutant des perturbations aléatoires à certaines équations du
modèle pour construire des régions de confiance pour les paramètres calibrés en
utilisant des techniques de simulation. Cette méthode utilise aussi le concept
classique de fonction pivotale d’un paramètre. Nous discutons en détail comment
cette méthode peut être appliquée aux paramèrtes calibrés d’une fonction de
production de type Cobb-Douglas.

We consider the problem of assessing the uncertainty of calibrated
parameters in computable general equilibrium (CGE) models through the
construction of confidence sets (or intervals) for these parameters. We study two
different setups under which this can be done. The first one extends earlier work
from Abdelkhalek and Dufour (1998) and is based on a projection technique
which allows the construction of confidence sets for calibrated parameters from
confidence sets on the free parameters of a (deterministc) CGE model. We discuss
in detail how this approach can be applied to CES (Armington-type) function
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parameters frequently used in CGE models and illustrate it on models of the
Moroccan economy. The second method allows one to extend the usual
deterministic specification of CGE models by adding stochastic disturbances to
the equations of the model and then to construct corresponding confidence sets
for calibrated parameters using simulation techniques. This method uses the
classical concept of a pivotal function for a parameter. We discuss in detail how
this method can be applied to the calibrated parameters of a Cobb-Douglas
production function.

Mots Clés : Modèles calculables d’équilibre général, calibration, région de confiance,
intervalle de confiance, projection, analyse de sensibilité, Maroc

Keywords: Computable general equilibrium models, calibration, sensitivity analysis,
confidence set, confidence interval, projection, Morocco



Contents

1. Introduction 1

2. Theoretical framework 3

3. Projection-based confidence sets 4

4. Calibrated parameters for CES and CET functions 6

5. Application to CGE models of Morocco 9

6. Confidence regions based on equations with disturbances 10

7. Confidence regions from equations with disturbances: general approach 15

8. Conclusion 19

A. Multiplicative disturbances 20

B. GAMS-MINOS program for the applications 21

References 24

iii



1. Introduction

Computable general equilibrium (CGE) models have come into extensive use for analyzing and
simulating the effects of economic policy changes in developing and industrialized countries. Pre-
sentations and overviews of this policy analysis tool may be found in Shoven & Whalley (1984,
1992), Manne (1985), Devarajan, Lewis and Robinson (1986, 1994), Martens (1993), Decaluw´e and
Martens (1988) as well as Gunning and Keyzer (1995). These models are generally non-stochastic
and strongly nonlinear. Results obtained by simulating these models rely on several assumptions,
pertaining both to the behavior of agents and to the choice of exogenous variables (the “closure” of
the model). The nature and quality of the available data also affects the results, whether base-year
data in static models (the reference year in the social-accounting matrix) or the stationary equilib-
rium in dynamic models. The values assigned to the parameters of the behavioral functions, which
underlie the “calibration” of the model, are no less crucial. In fact, since the work of Mansur and
Whalley (1984) and even before, CGE model designers have relied on calibration methods. These
generally require a good deal less time and effort than econometric estimation. Calibration relies
on a largely arbitrary distinction between “free parameters”, which can be obtained from external
sources or simply assigned on the basis of subjective judgements, and “calibrated parameters” which
are derived (“estimated”) from the former so as to reproduce the reference data (e.g. the base-year
data). In these methods there clearly exists a level of uncertainty attributable to the selection of free
parameters for the model, since these contribute to the calibration process.

The issue of the choice of values for the parameters of CGE models often gives rise to a natural
scepticism among those who need to build, analyze, or use these models. In general, these values
may be econometric estimates drawn from other studies, figures based on international comparisons,
or simply arbitrary values imputed with no supporting data. Elasticities available in the literature
are often contradictory and inconsistent. Frequently, they are obtained using sectorial classifications
different from those of the model, and pertain to other time periods or even countries. The varying
degrees of uncertainty affecting these models transfers to the results of the simulations [see Ab-
delkhalek and Dufour (1998)]. Since CGE models are rarely estimated using econometric methods
[except in the notable work of Jorgenson (1984) and his associates], it is difficult to perform tests
on the data or build confidence regions for the calibrated parameters and the endogenous variables
of the model. Even if the general specification of the model is not questioned, the credibility of
the conclusions suffers from the uncertainty associated with the reference-year data and with the
choice of parameters. As to this latter source of uncertainty, Mansur and Whalley (1984, p. 100),
among others, emphasize the crucial nature of the latter step in the model building process: “The
choice of elasticity values critically affects results obtained with these models”, and (p. 103)“ The
set of elasticity values used are critical parameters in determining the general equilibrium impacts
of policy changes generated by these models.” Shoven and Whalley (1984), in an article summa-
rizing the main studies realized up to 1984, recognize the key role played by the selection of these
parameters in determining economic policy simulations as well as the difficulties encountered by
researchers during calibration. They indicate that the method generally used is based upon an arbi-
trary choice of a point estimate around which sensitivity analysis may be performed. In particular,
they write: “ The procedure generally employed is to choose a central case specification, around
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which sensitivity analysis can be performed” [Shoven and Whalley (1984, pp. 1030–1031)].
Recognizing the seriousness of this problem, a number of authors have proposed an assortment

of approaches in order to translate parameter uncertainty into a measure of uncertainty for the re-
sults of the simulations; see especially Pagan and Shannon (1985, 1987), Harrison (1986, 1989),
Bernheim, Scholz and Shoven (1989), Harrison and Vinod (1992), Wigle (1986, 1991), Harrison,
Jones, Kimbell and Wigle (1993), DeVuyst and Preckel (1997) and Dawkins (1997); for a more
detailed description of most of these approaches, see Abdelkhalek (1994). These methods are fun-
damentally descriptive and do not resort to a rigorous statistical framework. More recently, however,
we proposed a more systematic approach, permitting the construction of confidence regions for the
endogenous variables of CGE models in order to account for free-parameter uncertainty; see Ab-
delkhalek and Dufour (1998).

Calibration may be viewed as a two-stage estimation procedure by which, starting from the val-
ues of the free parameters and the reference-year data, values are assigned to the calibrated param-
eters. Like free parameters, these may be interesting from an economic perspective. This method,
widely used in studies based on CGE models, has the advantage of being much less demanding than
traditional econometric methods, both from the perspective of data requirements and numerical pro-
cedures. However, this process has received very little attention in the literature on CGE models.
The only theoretical work on the numerical specification, and particularly on the calibration of CGE
models, appears in Mansur and Whalley (1984). This work was commented and completed by Lau
[comment on Mansur and Whalley (1984, pp. 127–135)]. The deterministic nature of these models
has rarely been criticized, and consequently the analysis and study of the calibrated parameters has
never been on the agenda of this literature.

In this paper we begin by formulating the problem of calibration in CGE models, specifying
two forms under which calibrated parameters appear in them (Section 2). In the first form, they are
only functions of the reference-period data, while in the second one they also depend on the free
parameters of the model. Drawing on the work of Abdelkhalek and Dufour (1998) on endogenous
variables in CGE models, we propose two statistical methods to construct confidence regions for
this type of parameter. The first (Section 3) is based on the concept of projection. It enables the
model builder to account for the uncertainty associated with calibrated parameters by constructing
confidence regions for them using those of the free parameters. In Sections 4 and 5, we illustrate this
approach for the calibrated parameter of a constant elasticity of substitution (CES) or transformation
(CET) functions (the Armington form), frequently used in CGE models. In Sections 6 and 7, we
attempt to move beyond the deterministic framework typical of CGE models by allowing stochastic
disturbances to appear in some of the equations of the model. We begin by discussing inference
on the parameters of Cobb-Douglas type production functions (Section 6), and then present a more
general discussion of the calibration of CGE models with equations containing disturbance terms
(Section 7). We conclude in Section 8.
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2. Theoretical framework

In its most general form, a CGE model may be represented by a functionM such that:

Y = M (X,β, γ) (2.1)

whereY is anm-dimensional vector of endogenous variables,M is a (generally nonlinear) function
which may be analytically quite complicated but remains computable,X is a vector of exogenous
or economic policy variables,β is ap-dimensional vector of free parameters belonging to a subset
Ω of R

p, andγ is a vector withk elements containing the parameters to be calibrated.
From a theoretical viewpoint,β andγ are not fundamentally different. However, they play very

different roles in these models. While the elements ofβ are parameters (e.g., elasticities) of the
behavioral equations of the model (utility/demand, production/supply, imports, exports, etc.), those
of γ are generally scale or share parameters. The calibration procedure thus consists of setting the
vector of parametersγ to exactlyreproduce the data of a reference year, given a point estimate of
the free parametersβ of the model. Thus, it is not surprising that the choice of these parameters has
a large influence on the simulation results.

More formally, consider the equation:

Y0 = M (X0, β, γ) (2.2)

whereY0 andX0 are vectors of endogenous and exogenous variables respectively for a given base
year. We solve forγ (assuming that the solution exists and is unique):

γ = H (Y0,X0, β) = h (β) . (2.3)

When an estimatêβ of β is available, the vectorγ is estimated by replacingβ with its estimate in
equations(2.3) and(2.2) . Furthermore, we can usually decomposeγ into two subvectorsγ1 and
γ2, whereγ1 (of dimensionk1) is independent ofβ. We can then write

γ1 = h1 (Y0,X0) . (2.4)

The second subvectorγ2 (of dimensionk2 = k − k1) is, on the other hand, a function ofβ as well
as ofX0 andY0, hence

γ2 = h̄2 (Y0,X0, β) = h2 (β) . (2.5)

To the extent that the vector of exogenous variables(X) is known, and bearing in mind that the
deterministic nature of the model is not at issue, we may simplify the notation and write the model
in the compact form

Y = ḡ (X,β) = g (β) , (2.6)

where the functions̄g andg are defined for a given base year (after calibration), whileg also treats
the vectorX as given. This formalization and qualifications on the calibrated parameters will prove
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to be very useful in theoretical developments and even indispensable for the numerical derivations
associated with some approaches presented in this paper.

Generally, we will be interested in the effects of one or several economic policies which modify
the elements of the vectorX. Solutions to the modelM , obtained for different values of exogenous
variablesX but a single estimate value ofβ may be compared and incorporated into a decision-
making process. In principle,β must be estimated econometrically, and it is possible to associate
measures of uncertainty (standard deviations, confidence regions) with it. However, this type of
information is generally ignored in appraisals of the reliability of the results.

We also note that the difficulties associated with the calibration of CGE models are not explicitly
considered by usual methods for sensitivity analysis. These methods only deal with the estimations
of the vectorβ, not γ. Notice that, in CGE models, the dimension of the joint vector

(
β′, γ ′)′

may be very large and econometric estimation difficult, if not impossible. In fact, the number of
parameters of a CGE model increases rapidly with the number of sectors and consumers. Statistical
data for high levels of disaggregation are frequently not available. The number of parameters to
estimate may easily surpass the size of the sample. Thus, calibration may be viewed as an estimation
procedure forγ. It is clear that this procedure only yields point estimates and does not account for
the uncertainty inherent in the estimation of the free parametersβ, nor for that associated with the
social-accounting matrix for the reference year [see Byron (1978) and Dawkins (1997)].

3. Projection-based confidence sets

In this section, we develop an approach that allows us to evaluate the uncertainty associated with the
subvector of calibrated parameters,γ2, deriving a confidence region from that of the vector of free
parametersβ. As in Abdelkhalek and Dufour (1998), we assume that we have a confidence region
C with level1− α for the parameterβ. In other words,C is a subset ofRp such that

P [β ∈ C] ≥ 1− α (3.1)

where0 ≤ α < 1. Two different interpretations may be put forward for the setC. First, we can
assume thatC is a sampling (frequentist) confidence region based on previous statistical studies
and observations,i.e. C = C (Z) is a random subset ofRp generated by a sampleZ such that the
probability that a given vectorβ is contained withinC (Z) is greater than or equal to1−α. Second,
in other situations we may treat the parameterβ as stochastic and consider thatβ ∈ C is a Bayesian
confidence region forβ. The arguments developed below are applicable under either of these two
interpretations. The regionC of R

p may be discrete, compact, connected or continuous.
Let h2 (C) represent the image ofC over a calibration functionh2 defined in equation (2.5):

h2 (C) =
{

γ2 ∈ R
k2 : γ2 = h2 (β0) for at least oneβ0 ∈ C

}
. (3.2)

Clearly, we have the implication:

β ∈ C ⇒ h2 (β) ∈ h2 (C) , (3.3)
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hence

P [γ2 ∈ h2 (C)] ≥ P [β ∈ C] ≥ 1− α . (3.4)

We see thath2 (C) is a conservative confidence region forγ2, with level greater than or equal
to 1 − α [see Rao (1973, Section 7b.3, p. 473) or Gouri´eroux and Monfort (1989, volume 2, pp.
243-250)].1 In particular, whenC is a sampling confidence region forβ, we have:

P [h2 (β) ∈ h2 (C)] ≥ P [β ∈ C] ≥ 1− α , ∀β ∈ Ω . (3.5)

We can also obtain individual confidence intervals for the elementsγ2i = h2i (β) of the vector
h2 (β) = (h21(β), . . . , h2k2 (β))′ . In fact, since

h2 (β) ∈ h2 (C) ⇒ [h2i (β) ∈ h2i (C) , for i = 1, . . . , k2] , (3.6)

we have:

P
[
γ2j ∈ h2j (C)

] ≥ P [γ2i ∈ h2i (C) , i = 1, . . . , k2]
≥ P [γ2 ∈ h2 (C)]
≥ 1− α , j = 1, . . . , k2 . (3.7)

Since the functionh2 is generally nonlinear, the seth2 (C) may be difficult to determine or
visualize. In particular, it is not usually an interval or an ellipse. Nonetheless, as shown in Ab-
delkhalek and Dufour (1998), relatively simple forms may be derived from fairly weak assumptions
on the functionh2 and on the setC representing the confidence region ofβ.2 In fact, if we as-
sume thath2 is continuous and thatC is compact inR

p, the confidence regionh2 (C) for γ2 is
also compact inRk2, and the univariate confidence regions for the elements ofγ2 are compact
in R. If h2 is continuous andC is connected inRp, the confidence regionh2 (C) for γ2 is also
connected inRk2 and the confidence regions for the elements ofγ2 are connected inR, and thus
take the form of intervals. Finally, ifh2 is continuous and ifC is alsocontinuous(i.e. connected,
closed and bounded) inRp, then the confidence regionh2 (C) for γ2 is also continuous inRk2,
and the univariate confidence intervals are continuous inR. In particular, in this case the individual
confidence regionsh2i (C) , i = 1, . . . , k2, assume the shape of closed and bounded intervals:
h2i (C) =

[
γL

2i, γ
U
2i

]
, whereγL

2i > −∞ andγU
2i < +∞, i = 1, . . . , k2.

In general, we can always construct simultaneous confidence intervals for the different elements
of h2 (β) . We simply consider the extreme values:

hL
2i (C) = inf {h2i (β) : β ∈ C} , hU

2i (C) = sup {h2i (β) : β ∈ C} (3.8)

where−∞ ≤ γL
2i < ∞ and−∞ < γU

2i ≤ ∞, i = 1, . . . , k2, . Since[h2i (β) ∈ h2i (C) , i =
1For further examples of the projection technique in econometrics, see Dufour (1989, 1990, 1997), Dufour and Kiviet

(1996, 1998 ), Dufour and Jasiak (1998), Kiviet and Dufour (1997).
2These assumptions onh2 are typical in CGE models.
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1, . . . , k2] ⇒ [hL
2i (C) ≤ h2i (β) ≤ hU

2i (C) , i = 1, . . . k2], we have:

P
[
hL

2j (C) ≤ γ2j ≤ hU
2j (C)

] ≥ P
[
hL

2i (C) ≤ γ2i ≤ hU
2i (C) , i = 1, . . . , k2

]
≥ P [γ2i ∈ h2i (C) , i = 1, . . . , k2]
≥ 1− α , for j = 1, . . . , k2. (3.9)

It is thus sufficient to minimize and maximize each element ofγ2 = h2 (β) subject to the constraint
β ∈ C to obtain (simultaneous) level1− α confidence intervals for all of them.

Using these results we can construct confidence regions for the endogenous variables of CGE
models from the confidence regions of the two parameter vectorsβ andγ2 (free, and calibrated
dependent on the free) or simply from those of the vectorβ of free parameters, having eliminated
the calibrated parameters depending on the free parameters while accounting for the uncertainty
associated with them. This result allows us to substantially simplify the numerical procedures,
especially when the dimension of vectorγ2 is large. We illustrate the process of building these
confidence regions of typeγ2 (C) with an example in the following sections.

4. Calibrated parameters for CES and CET functions

To illustrate the approach proposed above, we will now perform a detailed analysis of the case of an
Armington-typeimport function commonly used in CGE models. This general form, which can be
subject to various interpretations, is used to model sectorial production, exports, portfolio composi-
tion (models with financial flows), etc. In other words, this example covers a large number of cases
of calibration in the presence of free parameters (elasticities) in CGE models. This function is lin-
early homogenous in its arguments, the number of which depends upon the model (inputs or factors
of production, origin of imports, markets for exports, substitutable financial assets). In our example
we have an import model in which a consumer derives utility from consuming a composite good
denotedQ. This good is comprised of imported goodsM and domestic goodsD. The consumer’s
problem is to choose a combination of quantitiesM andD which minimizes overall expenditure,
given the two pricespM andpD and the levelQ. The Armington form of this CES function is given
by

Q = B
[
δM−ρ + (1− δ)D−ρ

]− 1
ρ . (4.1)

To find a more direct interpretation, we letσ = 1/(1 + ρ), i.e. ρ = (1 − σ)/σ. Equation(4.1)
may then be rewritten:

Q = B
[
δM

σ−1
σ + (1− δ) D

σ−1
σ

] σ
σ−1

(4.2)

whereB is a constant,δ a share parameter, andσ a (constant) elasticity of substitution between
imported and domestic goods. In our terminology, given the deterministic calibration procedures
applied to this type of function in CGE models [see Mansur and Whalley (1984],)B andδ are
calibrated parameters whileσ (or ρ) is a free parameter estimated or borrowed from outside the
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model, independent of the data from the social-accounting matrix for the reference year. The first-
order condition associated with this problem is given by the equality between the price ratio for the
two types of good and the marginal rate of substitution between imported and domestic goods:

pD

pM
=

[
(1− δ)

δ

](
D

M

)−ρ−1

(4.3)

or

M

D
=

[
δpD

(1− δ) pM

] 1
ρ+1

=
(

δ

1− δ

)σ (
pD

pM

)σ

. (4.4)

This method of modelling imports, examined in detail by de Melo and Robinson (1989) and
by Devarajan, Lewis and Robinson (1990), is extensively used in CGE models.3 This seems more
realistic than the classic formulation with perfect substitutability between goods. The CES function
is sufficiently tractable for the analytical derivations and the calibration of parameters, despite the
fact that it introduces a free parameter.

To calibrate the parameters of this type of function in CGE models different techniques have
been used (estimates, literature reviews, international comparisons, or arbitrary fixing) to assign a
value(σ̂) to the free parameter — the elasticity of substitution(σ) in this case. This value is crucial
and constitutes the first step of the calibration process. From the first order condition, [equation
(4.4)], from the data forQ0,M0 andD0, and from a normalization assumption imposed on the
base-year prices, we derive:4

(
M0

D0

) 1
σ̂

=
δ

1− δ

(
pD0

pM0

)
(4.5)

yielding a unique estimate forδ given by

δ̂ =

pM0
pD0

(
M0
D0

) 1
σ̂

1 + pM0
pD0

(
M0
D0

) 1
σ̂

= h21 (σ̂) . (4.6)

Now it remains to calibrate the scale parameterB. From equation(4.2) and from the base-year
data, we find:

B̂ = Q0/

[
δ̂M

σ̂−1
σ̂

0 +
(
1− δ̂

)
D

σ̂−1
σ̂

0

] σ̂
σ̂−1

= h22 (σ̂) . (4.7)

In equations(4.6) and(4.7) the essential role played by the free parameter in determining the values
of the other parameters appears clearly. From this deterministic approach to calibration, we seek

3For a review of general equilibrium studies having used these forms, see Decaluw´e and Martens (1988).
4An assumption concerning the base-year prices is usually made in CGE models. All prices, except those which

include taxes or subsidies, are normalized to one for the base year (i.e. are treated as indices).
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to construct confidence intervals for the two calibrated parameters,δ andB, given that of the free
parameterσ. To achieve this we work, not with a point estimate forσ, σ̂, but rather with a set
estimate.

Moving from the definition for a continuous function of a confidence intervalC ⊂ R for σ
given in expression(4.6) towards a subseth21 (C) ⊂ R, we analytically illustrate the construction
of what is to become a confidence interval forδ. To simplify notation, we write:

N (σ) =
pM0

pD0

(
M0

D0

) 1
σ

=
pM0

pD0

e
1
σ

ln
(

M0
D0

)
, (4.8)

hence

δ = h21 (σ) =
N (σ)

1 + N (σ)
. (4.9)

We now wish to examine the behavior of the functionh21, particularly within the confidence
intervalC. From equation(4.9) we see that

dδ

dσ
=

N ′ (σ) [1 + N (σ)]−N ′ (σ) N (σ)
[1 + N (σ)]2

=
N ′ (σ)

[1 + N (σ)]2
(4.10)

where

N ′ (σ) =
dN

dσ
=

pM0

pD0

[
− 1

σ2
ln

(
M0

D0

)](
M0

D0

) 1
σ

. (4.11)

So it is clear that the sign ofdδ/dσ is the same as that ofdN/dσ, i.e

sgn

(
dδ

dσ

)
= sgn

(
dN

dσ

)
= sgn

[
− ln

(
M0

D0

)]
= sgn

[
ln

(
D0

M0

)]
(4.12)

wheresgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0,andsgn(x) = 0 if x = 0. If D0 > M0,
then(dδ/dσ) > 0 and vice versa. This result, which we have never encountered in the literature on
CGE models, is quite surprising and, depending on the context, it may have interesting economic
interpretations. We see that the functionh21 is continuous and strictly monotonic. If we assume that
the confidence interval forσ (C) is a closed bounded set of the form[σ, σ] , with level 1 − α, then
one of the two intervals[h21 (σ) , h21 (σ)] and[h21 (σ) , h21 (σ)] is a level1−α confidence interval
for the calibrated parameterδ.5 In other words, one of the following implications must hold:

P (σ ∈ [σ, σ]) ≥ 1− α ⇒ P (δ ∈ [h21 (σ) , h21 (σ)]) ≥ 1− α , (4.13)

P (σ ∈ [σ, σ]) ≥ 1− α ⇒ P (δ ∈ [h21 (σ) , h21 (σ)]) ≥ 1− α . (4.14)

In addition to the share parameterδ, a similar analysis may be performed on the scale parameterB.

5A study by Reinert and Roland-Holst (1992) of 163 sectors of the U.S. economy reveals that this elasticityσ falls
between 0.14 and 3.49.
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This work is analytically not as simple as that onδ, but remains feasible numerically (see Section
5).

Since the calibration procedure is usually performed in a pre-defined order, accounting for the
uncertainty associated with the calibrated parameters depending on the free parameters is tanta-
mount to clearly specifying the confidence regions for the free parameters of the model.

5. Application to CGE models of Morocco

In this section, we apply the projection method described in Section 3 to the construction of con-
fidence sets for the calibrated parameters (which depend on free parameters) in the context of two
different models for Morocco. The first one is a submodel of a type 1-2-3 CGE model [Devarajan,
Lewis and Robinson (1990)] studied in Abdelkhalek (1994) and Abdelkhalek and Dufour (1998).
The second one is a submodel of a two-sector model (agriculture and industry) used by Abdelkhalek
and Martens (1996). Both models include imported goods(M) and locally produced goods(D),
which are aggregated through an Armington-type CES function. The Moroccan reference year data
come from 1985 for the first model and from 1990 for the second model. Calculations and opti-
mizations were performed using the GAMS-MINOS program [see Brooke and al. (1988)].6

Given the reference-year valuesQ0, M0, D0, pM0 andpD0 and a level1− α confidence region
C for the free parameterσ, the confidence intervals are obtained by minimizing and maximizing
the values of the calibrated parameters subject to the restriction that the free parameter remains in
its confidence region. Note the confidence setC for σ may be truncated to only contain values in a
setC0 of economically admissible values; the resulting smaller confidence setC ∩C0 has the same
level as the original setC [see Abdelkhalek and Dufour (1998)]. The setC ∩ C0 to which σ is
restricted is usually specified through a set of nonlinear inequalities. More precisely, we solve the
following problems:

minimize and maximizeδ = h21 (σ) ≡ (pM0/pD0) (M0/D0)
1
σ

1 + (pM0/pD0) (M0/D0)
1
σ

subject to σ ∈ C ∩ C0 ; (5.1)

minimize and maximizeB = h22 (σ) = Q0/

[
δM

σ−1
σ

0 + (1− δ) D
σ−1

σ
0

] σ
σ−1

subject to δ = h21 (σ) and σ ∈ C ∩C0 . (5.2)

It is also useful to remember that the price of the imported good is given by the equation

pM0 = pwm0(1 + tm)E0 (5.3)

6The program is supplied in Appendix B.
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TABLE 1: Moroccan data used in the calibrationsa

Variables SAM 1985 SAM 1990 SAM 1990
Agriculture Industry

Q0 252653 69589.32 317195.92
M0 42806 4248 59327.9
D0 209847 65341.32 257868.02
TAXM0 9046.7 -391.79 10048.1
tm 0.211 -0.0922 0.16936
PD0 1 1 1
PWM0 1 1 1
E0 1 1 1
PM0 1.211 0.9078 1.16936
σ [0.7838, 2.0809] [0.5, 4.5] [0.5, 4.5]

aSAM: social accounting matrix. Data for Q0,M0,D0,TAXM 0,are in millions of dirhams and were
obtained from GREI (1992) for 1985 and from Abdelkhalek and Martens (1996) for 1990. The
confidence intervals forσ are econometric estimates for 1985 from Abdelkhalek and Dufour (1998)
, while those for 1990 are subjectively determined although consistent with the elasticity values
reported by Reinert and Roland-Holst (1992).

wherepwm0 is the international price of imports,tm is the tariff on imports andE0 is the nominal
exchange rate, evaluated at the reference year.

The Moroccan data used in our calculations are summarized in Table 1, while the confidence
intervals for calibrated parametersδ andB appear in Table 2. For the one-sector model calibrated
on the reference year 1985, we used for the free parameterσ the 95% confidence interval[0.7838,
2.0809], which is based on the estimations presented in Abdelkhalek and Dufour (1998). The results
in Table 2 indicate that this interval onσ gets translated into the intervals[0.137, 0.361] and[1.568,
1.862] for δ andB respectively. These intervals show there is a non-negligible uncertainty on the
calibrated parameters even though the confidence intervals remain remarkably tight and informative.
For the two-sector model (calibrated on 1990 data), we used the wider interval[0.5, 4.5]. The
latter was a subjectively determined, although quite consistent with the range of values reported
by Reinert and Roland-Holst (1992) for similar elasticities. Not surprisingly, we find in this case
wider (although still informative) intervals for the sectorial parametersδ and B associated with
agriculture and industry:δ ∈ [0.004, 0.331] andB ∈ [1.010, 1.658] for the agricultural sector,δ ∈
[0.058, 0.458] andB ∈ [1.470, 1.988] for the industrial sector.

6. Confidence regions based on equations with disturbances

In this section, we present an approach for constructing confidence regions for the calibrated pa-
rameters of the model, going beyond the deterministic framework which is typical of CGE models.
This method introduces randomness, and thus uncertainty, into some or all of the model equations
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TABLE 2: Confidence intervals forδ andB

Parameter δ B

Confidence bounds Lower Upper Range Lower Upper Range
1985 0.137 0.361 0.224 1.568 1.862 0.294
Agriculture 1990 0.004 0.331 0.327 1.010 1.658 0.648
Industry 1990 0.058 0.458 0.400 1.470 1.988 0.518

used for the deterministic calibration, in order to construct simultaneous confidence regions for the
calibrated parameters.

Before generalizing the proposed approach (Section 7), we shall discuss the simple case of a
Cobb-Douglas production function with constant returns to scale for the factors labor and capital.
Since primary inputs are required in the production process, “production” is defined as value added.
This type of modelling and these functional forms are frequently used in CGE models because of the
simplicity, of the resulting expressions and calibration. The general form of this type of production
function in the presence of several categories of the labor input and a single factor capital per sector
is given by:

Xi = Ai

∏
l

L
δi,l

i,l K
(1−∑

l δi,l)
i . (6.1)

whereXi is production (or value added) in sectori, Ai is a scale parameter,Li,l is the quantity of
the typel labor used in sectori, Ki is the quantity of capital used in sectori, andδi,l the elasticity
of production of typel labor in sectori. All of the following presentation may be derived from
equation(6.1) . In order to simplify the notation, we shall ignore the indexi representing the sector
and consider only one type of labor. Thus, production function(6.1) assumes the following simpler
form:

X = ALδK(1−δ) . (6.2)

In standard CGE models certain assumptions are made concerning the structure of markets.
These assumptions facilitate accounting for the behavior of agents, particularly of firms, in each
sector of the economy. This information is used to derive factor demands from profit maximization
programs. Since our concern here is primarily econometric, we shall assume that the sector is
perfectly competitive. The first-order conditions are:

pXδ = wL, (6.3)

wherep is the price of goodX (or the price of the value added), andw is the wage rate of labor.
To calibrate the parameters of this type of function, model builders only require reference data for
the base year from a social-accounting matrix. No information on the free parameters is required.
The necessary data for the reference year comprise: the sectorial value of production (or the value
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added,p0X0) and the corresponding total wage bill(w0L0) . Equation(6.3) then yields a unique
estimate forδ, based on a single observation (the base year), owing to the deterministic nature of
the model:

δ̂ =
w0L0

p0X0
. (6.4)

From this estimate forδ and from equation(6.2) , we can derive an estimate for the scale coefficient
of the production function(A) :7

Â =
X0

Lδ̂
0K

(1−δ̂)
0

. (6.5)

Given the aforementioned assumptions, it is obvious that this calibration procedure may be applied
to production functions of this type for all sectors and factors of production.

We now consider a production function(6.2) incorporating a stochastic disturbance term —
applicable to this example as well as similar ones. The notion of introducing random shocks into
some of the equations of a CGE model (those used in the deterministic calibration) is not entirely
new. Mansur and Whalley (1984) proposed stochastic forms for CGE models which allow the
estimation of the parameters, provided there is a sufficient number of observations. However, this
is generally not possible (e.g. when the data only pertains to a single base year). This is the case
we are concerned with here. Assume that the production function(6.2) and the first-order condition
(6.3) are stochastic, as follows:

X = ALδK(1−δ)eu , (6.6)

pXδ = wLev , (6.7)

where(u, v) is a vector of random variables with a known distribution that can be simulated. Two
equations can be written for the base-year data:

X0 = ALδ
0K

(1−δ)
0 eu0 , (6.8)

p0X0δ = w0L0e
v0 , (6.9)

whereA andδ are the two unknown parameters. We then deduce:

δ =
w0L0

p0X0
ev0 , (6.10)

A =
X0

Lδ
0K

(1−δ)
0 eu0

. (6.11)

The equations for the deterministic framework derived in(6.4) and(6.5) no longer obtain, because
they only hold true when the random errorsu andv are identically zero. In the stochastic model

7Notice that we have again normalized the prices, allowing us to impute the valuep0X0 to the volumeX0.
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these two equations yield estimators forδ andA respectively. Thus, by definition,

δ̂0 =
w0L0

p0X0
(6.12)

irrespective ofA. Let

A0 ≡ A0 (δ) =
X0

Lδ
0K

(1−δ)
0

. (6.13)

In particular, forδ̂0 we obtain:

Â0 = Â0

(
δ̂0

)
=

X0

Lδ̂0
0 K

(1−δ̂0)
0

. (6.14)

From equations(6.11) and(6.14) we find

Â0

A
=

Lδ
0K

(1−δ)
0 eu0

Lδ̂0
0 K

(1−δ̂o)
0

(6.15)

or, equivalently,

Â0

A
=

(
K0

L0

)(δ̂0−δ)
eu0 (6.16)

which, upon taking logs, yields

ln
(
Â0

)
− ln (A) =

(
δ̂0 − δ

)
ln

(
K0

L0

)
+ u0 . (6.17)

Furthermore, from equations(6.10) and(6.12) we derive:

δ̂0

δ
=

1
ev0

(6.18)

or

ln (δ)− ln
(
δ̂0

)
= v0 . (6.19)

From either equation(6.18) or (6.19) , we see that̂δ0/δ or
[
ln

(
δ̂0

)
− ln (δ)

]
arepivotal func-

tions for the parameterδ. A pivotal function for δ is any stochastic functionZ defined on the
observations and on the parameterδ such that the distribution ofZ does not depend onδ despite the
fact that this parameter appears in the arguments.8 When we have a pivotal function which can be

8See Gouri´eroux and Monfort (1989, volume 2, p. 24), for example.
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inverted to isolate the parameter of interest, we can construct confidence intervals for that parameter.
This is the procedure we shall use here. Given any known distribution of the vector(u0, v0) , simu-
lated confidence intervals may be constructed for the parametersδ andA or for functions of these
parameters. Notice that, unlike Mansur and Whalley (1984), we require neither that(u0, v0) be
normally distributed noru0, v0 be independent. However, by making these assumptions we benefit
from significant practical simplifications.

In the case we are about to examine, notice thatδ̂0/δ only depends uponv0 (and not onu0). We
can write

P
(
δ̂0/δ ≥ cα

)
= P

(
e−v0 ≥ cα

)
= α (6.20)

whereα is a constant fixed a priori andcα is the corresponding critical value, which can be derived
from the theoretical or simulated distribution ofv0. Thus we have

P
(
δ̂0/δ ≤ cα

)
= 1− α , (6.21)

and

Γδ =
{

δ ∈ R : δ̂0/δ ≤ cα

}
=

{
δ ∈ R : cαδ ≥ w0L0

p0X0

}
(6.22)

is a level1− α confidence interval for the parameterδ.
Similarly, we can construct a confidence interval for the parameterA. In a first instance, if

we assume thatδ is known and that the unknown parameter is the scale parameterA, we can use
equations(6.11) and(6.13) to derive:

eu0 = A0/A (6.23)

which, as before, yields a pivotal function forA and allows the construction of a confidence interval
for this parameter. Nonetheless, asδ is generally unknown, this procedure may not be very useful.
The two equations(6.16) and(6.17) cannot yield a pivotal function forA. Even if we use equations
(6.17) and(6.18) to eliminateδ, the ensuing expression

u0 = ln
(
Â0

)
− ln (A) + δ̂0 (ev0 − 1) ln (K0/L0) (6.24)

does not constitute a pivotal function forA.
When δ is unknown it is thus difficult (if not impossible) to construct a similar confidence

interval for A. Nonetheless, it is possible to find a two-dimensional pivotal function for the two-
dimensional parameter(A, δ) . Using equations(6.17) and(6.19) we may write:

W =
(

u0

v0

)
=


 ln

(
Â0

)
− ln (A) +

(
δ − δ̂0

)
ln (K0/L0)

ln (δ)− ln
(
δ̂0

)

 . (6.25)
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Since the distribution of the vector(u0, v0) is fixed and known by assumption, we indeed have a
pivotal function for the pair[ln (A) , δ] . Since the covariance matrix,Ω, of this vector is known, we
can calculate the following statistic:

T (u0, v0) = W ′Ω−1W . (6.26)

By assumption, this distribution can be simulated. In particular, if we assume that the distribution
of vector(u0, v0) is multivariate normal, this distribution will beχ2 (2) . Consequently, we can find
the pointcα such that

P [T (u0, v0) ≤ cα] = P
[
W ′Ω−1W ≤ cα

]
= 1− α , (6.27)

whereα is a level fixed a priori. Finally, a level1− α confidence region for the pair(A, δ) is given
by

Γ(δ,A) =
{
(δ,A) ∈ R

2 : W ′Ω−1W ≤ cα

}
. (6.28)

The procedure described in this Section for Cobb-Douglas production functions covers a num-
ber of cases used in CGE models. Similar cases may be dealt with using the same techniques to
construct confidence regions for all the calibrated parameters of a model.

7. Confidence regions from equations with disturbances: general
approach

In this section, we generalize the approach based on simulations to construct confidence regions,
compatible with an underlying deterministic calibration, for all the calibrated parameters of a CGE
model. To accomplish this, we revert to the first three equations describing the basic structure of the
problem, given in Section 2:

Y = M (X,β, γ) , (7.1)

Y0 = M (X0, β, γ) , (7.2)

γ = H (Y0,X0, β) = h (β) . (7.3)

To begin, assume that there are no free parameters in the model,i.e. that all parameter values
can be derived from the reference-year data (such as a social-accounting matrix). We shall return to
examine the case with free parameters. Equations(7.1) , (7.2) and(7.3) can thus be simplified to:

Y = M̄ (X, γ) , (7.4)

Y0 = M̄ (X0, γ) , (7.5)

γ = H̄ (Y0,X0) . (7.6)

Contrary to what is implied by the general formulation of the model as expressed above, the calibra-
tion process usually only uses some of the equations of the model. Generally, these are the equations
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which specify the behavior of agents, the corresponding first-order conditions, and sometimes cer-
tain equilibrium conditions. The remaining equilibrium conditions, the accounting identities, and
the definitions are not used in the calibration. For this reason, and because it is the econometric
aspect of calibration that we are interested in, we may rewrite the calibration sub-system as

Y S = S
(
XS , γ

)
, (7.7)

hence

γ = H̄S

(
Y S

0 ,XS
0

)
(7.8)

whereY S
0 and XS

0 respectively represent the model’s subvectors of endogenous and exogenous
variables used for calibration. So far we have only been working within the deterministic framework
of CGE models.

The stochastic extension to the model which we are about to consider consists of associating
additive error terms (for the demand functions) and multiplicative error terms (for the production
or similar functions) with the system of equations in(7.7) , as proposed by Mansur and Whalley
(1984). Let the relation in(7.7) include a vector of additive disturbancesU :9

Y S = S
(
XS , γ

)
+ U (7.9)

whereU is a vector of random terms of the same dimension asY S , with any distribution which is
known and can be simulated.In particular, the distribution ofU need not be normal.10 With no loss
of generality, we may assume that the expectation ofU is zero, and that the covariance is known
and equal toΣ. It is thus clear that the deterministic framework has been abandoned, albeit within
the context of calibration.

As in equation(7.5) , but now including the random term, we can write:

Y S
0 = S

(
XS

0 , γ
)

+ U0 (7.10)

whereU0 has the same distribution asU. As in the case of deterministic calibration, we derive:

γ = H̄S

(
Y S

0 − U0,X
S
0

)
. (7.11)

Consequently, equation(7.8) no longer obtains. It is only true whenU0 is a vector of zeros. Thus,
in this stochastic context the function̄HS

(
Y S

0 ,XS
0

)
yields an estimator̂γ0 for γ :

γ̂0 = H̄S

(
Y S

0 ,XS
0

)
. (7.12)

9Letting this vector enter the equation multiplicatively does not affect our results (see the formulation in Appendix
A).

10The elements ofU may be degenerate at zero if by their economic nature the equations used in the deterministic
calibration do not contain random disturbances.
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This, combined with the definition of this estimator(7.7) yields:

Y S
0 = S

(
XS

0 , γ̂0

)
. (7.13)

The goal of this step in the proposed procedure is to derive the scalar or vector relationships from
equations(7.10) and(7.13) (possibly after performing some algebraic transformations as required
by certain equation structures), allowing us to solve for some or all of the elements ofU (or for some
algebraic transformation of the vectorU or its elements). Since the distribution ofU is known, these
transformations allow us to derive a pivotal function forγ. Using equations(7.10) and(7.13) we
easily find the following:

W
(
XS

0 , γ̂0, γ
)

= S
(
XS

0 , γ̂0

)− S
(
XS

0 , γ
)

= U0 . (7.14)

Since the distribution ofU0 is known (by assumption), the left-hand side of expression(7.14) de-
fines a pivotal function for the parameterγ. Moreover, in a calibration system like the one defined
in equations(7.7) and(7.8) the number of calibrated parameters contained inγ (k in our case) is
always equal to the number of equations. In other words,k is the dimension ofγ, Y S , andU. Lau,
commenting on Mansur and Whalley (1984), makes a similar remark. IfΣ is the covariance matrix
of U, we may simulate the pivotal functionT (γ) as follows:

T (γ) = W
(
XS

0 , γ̂0, γ
)′

Σ−1W
(
XS

0 , γ̂0, γ
)

= U ′Σ−1U . (7.15)

We findcα such that:

P [T (γ) ≤ cα] = P
[
U ′Σ−1U ≤ cα

]
= 1− α . (7.16)

Finally, the confidence region we seek forγ is defined as:

Γγ =
{

γ ∈ R
k : T (γ) ≤ cα

}
. (7.17)

In practice, the appropriate critical pointcα may not be analytically computable. To obtain an
exact confidence region, we may fall back on Monte-Carlo tests [Dwass (1957), Barnard (1963),
Dufour and Kiviet (1996, 1998), Dufour (1995)]. By assumption, it is possible to generateN
independent and identically distributed representations,U1, . . . , UN , of the vectorU using Monte-
Carlo techniques and, by extension,N independent and identically distributed representations,Ti =
U ′

iΣ
−1Ui, i = 1, . . . ,N, of the pivotal function,T (γ) . Thus, the variablesT (γ) , T1, . . . , TN ,

are independent and identically distributed.
Now consider the functions

F̂N (x) =
1
N

[
N∑

i=1

s (x− Ti)

]
, q̂N (x) =

NF̂N (x) + 1
N + 1

, (7.18)

wheres (x) = 1 if x ≥ 0 ands (x) = 0 if x < 0. If we assume that the distribution ofT (γ) is
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continuous, we easily see that

P {q̂N [T (γ)] ≤ 1− α} =
I [(1− α) (N + 1)]

N + 1
, for α ∈ (0, 1) , (7.19)

whereI[x] is the largest integer less than or equal tox. In particular, if(1− α) (N + 1) is an integer,
we have:

P {q̂N [T (γ)] ≤ 1− α} = 1− α , α ∈ (0, 1) . (7.20)

It follows that the set

Γγ (N) = {γ : q̂N [T (γ)] ≤ 1− α} , (7.21)

is a level1− α confidence region forγ.
So far we have assumed that the model contains calibrated, but not free, parameters. Now

we shall consider the case in which both parameter types appear in the model. This amounts to
combining a priori information on the free parameters with the distributions of random variables in
the model to construct confidence intervals for the calibrated parameters. If we can condition on
a point estimate of the free parameters, we revert to the case discussed earlier in this section since
the conditioning eliminates the extrinsic uncertainty. However, if the two sources of uncertainty are
jointly accounted for, the approach proposed for the case with no free parameter changes, but not
fundamentally. In fact, alongside the equations used in the deterministic calibration, and which are
now considered to contain disturbances which are either additive or multiplicative, we now add not
a point estimate of the vector of free parameters nor a confidence region for this vector, but rather
an estimator with a distribution that is known a priori.11

For example, consider the case of constant elasticity of substitution or transformation functions,
like the Armington function we examined in Section 4. We let the function and its associated first-
order condition contain two multiplicative errors in the following manner:

Q = B
[
δM

σ−1
σ + (1− δ)D

σ−1
σ

] σ
σ−1

eu , (7.22)

M

D
=

(
δ

1− δ

)σ (
pD

pM

)σ

ev (7.23)

whereu andv are random variables. The vector(u, v) need not have a normal distribution, nor is it
required thatu andv be independent. Moreover, we assume an a priori distribution for the estimator
σ̂ of the free parameterσ. If we have reasons to suspect that the distribution of this parameter is
not independent of the vector(u, v) , we need to consider the joint distribution of(σ̂, u, v) , and
its covariance matrix must be estimated before we can perform simulations. It remains to find the
pivotal function forδ andB — not a negligible task from an analytical perspective. The distribution
of this pivotal function will be related to that of the vector(σ̂, u, v) .

11Such hypotheses are often made in sensitivity analysis of CGE models [see, for example, Harrison and Vinod (1992)
and Dawkins (1997)].
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8. Conclusion

In this paper we have formalized the concept of calibration in CGE models and developed two
statistical methods for constructing confidence intervals for the calibrated parameters of these mod-
els. One is based on a projection technique which allows the construction of confidence sets for
calibrated parameters. It greatly facilitates the construction of confidence regions for the endoge-
nous variables of the model. After discussing numerical methods for implementing the approach
developed, the latter was illustrated on a CES function (the Armington function) frequently used
in CGE models. The second method allows one to extend the usual deterministic specification of
CGE models by adding stochastic disturbances to the equations of the model and then to construct
corresponding confidence sets for calibrated parameters using simulation techniques. This method
uses the classical concept of a pivotal function for a parameter. The general nature of this procedure
allows it to apply to several cases that frequently occur in CGE models. We used a Cobb-Douglas
production function to illustrate it. These two new methods of statistical inference in CGE models
go part way to solving one of the most serious econometric problems associated with these models
and provide a way to manage the issue of uncertainty in the calibration of CGE models.
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A. Multiplicative disturbances

Generally in economics, equations are assigned multiplicative stochastic terms to assure non-
negativity of the endogenous variables. We use this assertion in the proof. Let equation(7.7)
contain multiplicative errors disturbances as follows:

Y s = US (Xs, γ) , (A.1)

or

Y s′ = S (Xs, γ)′ U ′ (A.2)

whereU is a square diagonal matrix whose dimension equals the number of elements ofY s. The
distribution of the elements ofU is known and can be simulated, it does not need to be normal.12

With no loss of generality, we may assume that the expectation of the elements ofU is unity, and
the known covariance matrix is denotedΣ. Considering our comment on the non-negativity of the
endogenous variables, and thus of the random terms associated with the equations,(A.1) may be
written:

ln (Y s
i ) = ln (Ui) + ln [Si (Xs, γ)] , i = 1, . . . , k. (A.3)

With this form, if the disturbance terms were additive the logarithmic transformation would not
be performed. With the appropriate changes in variables we revert to the additive disturbances dealt
with in the text.

12The elements ofU may be degenerate at1 if by their economic nature the equations used in the deterministic
calibration do not contain random disturbances.
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B. GAMS-MINOS program for the applications

$TITLE PROJECTION METHOD APPLICATION
$TITLE ARMINGTON-TYPE CES FUNCTION
OPTION NLP = MINOS5;
* A MODEL OF TYPE 1-2-3 AND A TWO SECTOR MODEL
* PARAMETERS DECLARATION
* THE REFERENCE-YEAR VALUES FOR THE CALIBRATION
* (OBTAINED FROM MOROCCAN SAM 1985 AND 1990)
PARAMETERS
PDO PRICE OF DOMESTIC GOOD IN THE REFERENCE-YEAR
PWMO INTERNATIONAL PRICE OF IMPORT IN THE REFERENCE-YEAR
EO NOMINAL EXCHANGE RATE IN THE REFERENCE-YEAR (FOR CONVERSION)
PMO DOMESTIC PRICE OF IMPORTED GOOD IN THE REFERENCE-YEAR
QO DEMAND FOR THE COMPOSITE GOOD IN VOLUME IN THE REFERENCE-YEAR
MO IMPORTS IN VOLUME IN THE REFERENCE-YEAR
DO INTERNAL DEMAND FOR DOMESTIC GOOD IN THE REFERENCE-YEAR
TMO TARIFF ON IMPORTS IN THE REFERENCE-YEAR
TAXMO TAX ON IMPORTS IN THE REFERENCE-YEAR
;
VARIABLES
* IN THE PROJECTION APPROACH TO CONSTRUCT CONFIDENCE SETS FOR THE CALI-

BRATED
* PARAMETERS, SIGMA, DELTA AND BM ARE VARIABLES
* THEY ARE A PARAMETER IN STANDARD CGE MODEL
SIGMA ELASTICITY OF SUBSTITUTION BETWEEN IMPORTED AND DOMESTIC

GOODS
BM SCALE PARAMETER IN THE CES FUNCTION.
DELTA SHARE PARAMETER IN THE CES FUNCTION
OBJ OBJECT VARIABLE IN THE OPTIMIZATION PROGRAM
;
* DATA AND CALCULUS
SCALAR
PDO /1/
EO /1/
PWMO /1/
$ONTEXT
* REFERENCE-YEAR DATA FOR 1985
DO /209847/
MO /42806/
TAXMO /9046.7/
$OFFTEXT
$ONTEXT
* REFERENCE-YEAR DATA FOR THE AGRICULTURAL SECTOR 1990
DO /65341.32/
MO /4248.00/
TAXMO /-391.79/
$OFFTEXT
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$ONTEXT
* REFERENCE-YEAR DATA FOR THE INDUSTRIAL SECTOR 1990
DO /257868.02/
MO /59327.9/
TAXMO /10048.10/
$OFFTEXT
;
QO = MO + DO;
TMO = TAXMO / MO;
PMO = PWMO*(1+TMO)*EO;
DISPLAY DO, MO, QO, PWMO, EO, PDO, PMO, TMO, TAXMO;
* INITIALIZATION OF VARIABLES
$ONTEXT
* INITIALIZATION FOR ALL CASES EXCEPT MINIMIZING BM IN AGRICULTURE
SIGMA.L = 1.432371;
BM.L = 1.826;
DELTA.L = 0.285;
OBJ.L = 1.43;
$OFTEXT
$ONTEXT
*INITIALIZATION FOR MINIMIZING BM IN AGRICULTURE
SIGMA.L = 0.5;
BM.L = 1.001;
DELTA.L = 0.04;
OBJ.L = 1.470;
$OFTEXT
* BOUNDS ON VARIABLES
$ONTEXT
* FOR 1985
SIGMA.LO = 0.78381698;
SIGMA.UP = 2.080925014;
$OFFTEXT
$ONTEXT
* FOR AGRICULTURAL AND INDUSTRIAL SECTOR IN 1990
SIGMA.LO = 0.5;
SIGMA.UP = 4.5;
*$OFFTEXT
* EQUATIONS FOR MINIMIZING AND MAXIMIZING DELTA AND BM
EQUATIONS
UPSIGEQ UPPER BOUND FOR SIGMA
LOSIGEQ LOWER BOUND FOR SIGMA
DELTAEQ CALCUL OF THE SHARE PARAMETER
BMEQ CALCUL OF THE SCALE PARAMETER
OBJEQ OBJECT FUNCTION
;
$ONTEXT
* FOR 1985
UPSIGEQ.. SIGMA =L= 2.080925014;
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LOSIGEQ.. SIGMA =G= 0.783816986;
$OFFTEXT
$ONTEXT
* FOR AGRICULTURAL AND INDUSTRIAL SECTOR IN 1990
UPSIGEQ.. SIGMA =L= 4.5;
LOSIGEQ.. SIGMA =G= 0.5;
*$OFFTEXT
BMEQ.. QO =E= BM*(DELTA*MO**(-((1-SIGMA)/SIGMA))+

(1-DELTA)*DO**(-((1-SIGMA)/SIGMA)))**(SIGMA/(SIGMA-1));
DELTAEQ.. MO =E=(((DELTA/(1-DELTA))**(SIGMA))*((PDO/PMO)**SIGMA))*DO;
OBJEQ.. OBJ =E= DELTA;
OBJEQ.. OBJ =E= BM;
OPTIONS LIMROW = 0, LIMCOL = 0 ;
MODEL ARMIG /DELTAEQ, UPSIGEQ, LOSIGEQ, OBJEQ/;
MODEL ARMIG /DELTAEQ, BMEQ, UPSIGEQ, LOSIGEQ, OBJEQ/;
SOLVE ARMIG USING NLP MAXIMIZING OBJ;
SOLVE ARMIG USING NLP MINIMIZING OBJ;
DISPLAY SIGMA.L, DELTA.L;
DISPLAY SIGMA.L, DELTA.L, BM.L;
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