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M ar kovian Processes, Two-Sided Autoregressions
and Finite-Sample Inference for Stationary and
Nonstationary Autor egr essive Processes

Jean-Marie Dufour”, Olivier Torrés
Résumé / Abstract

Dans cet article, nous proposons des procédures d’inférence valides a
distance finie pour des modéles autorégressifs (AR) stationnaires et non-
stationnaires. La méthode suggérée est fondée sur des propriétés particulieres des
processus markoviens combinées a une technique de subdivision d’échantillon.
Les résultats sur les processus de Markov (indépendance intercalaire, troncature)
ne requierent que l'existence de densités conditionnelles. Nous démontrons les
propriétés requises pour des processus markoviens multivariés possiblement non-
stationnaires et non-gaussiens. Pour le cas des modeéles de régression linéaires
avec erreurs autorégressives d’ordre un, nous montrons comment utiliser ces
résultats afin de simplifier les propriétés distributionnelles du modéle en
considérant la distribution conditionnelle d’'une partie des observations étant
donné le reste. Cette transformation conduit a un nouveau modele qui a la forme
d’'une autorégression bilatérale a laquelle on peut appliquer les techniques usuelles
d’analyse des modeles de régression linéaires. Nous montrons comment obtenir
des tests et régions de confiance pour la moyenne et les paramétres autorégressifs
du modéele. Nous proposons aussi un test pour I'ordre d’'une autorégression. Nous
montrons qu’une technique de combinaison de tests obtenus a partir de plusieurs
sous-échantillons peut améliorer la performance de la procédure. Enfin la méthode
est appliquée a un modéle de l'investissement aux Etats-Unis.

In this paper, we devel op finite-sample inference procedures for stationary
and nonstationary autoregressive (AR) models. The method is based on special
properties of Markov processes and a split-sample technique. The results on
Markovian processes (intercalary independence and truncation) only require the
existence of conditional densities. They are proved for possibly nonstationary
and/or non-Gaussian multivariate Markov processes. In the context of a linear
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regression model with AR(1) errors, we show how these results can be used to
simplify the distributional properties of the model by conditioning a subset of the
data on the remaining observations. This transformation leads to a new model
which has the form of a two-sided autoregression to which standard classical
linear regression inference techniques can be applied. We show how to derive
tests and confidence sets for the mean and/or autoregressive parameters of the
model. We also develop a test on the order of an autoregression. We show that a
combination of subsample-based inferences can improve the performance of the
procedure. An application to U.S. domestic investment data illustrates the method.

Mots Clés : Seéries chronologiques, processus de Markov, processus autorégressif,
autocorrélation, modele dynamique, modele a retards échelonnés, autorégression
bilatérale, indépendance intercalaire, test exact, Ogawara-Hannan, investissement

Keywords. Time series, Markov process, autoregressive process, autocorrelation, dynamic
model, distributed-lag model, two-sided autoregression, intercalary independence,
exact test, finite-sample test, Ogawara-Hannan, investment
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1. Introduction

The presence of nuisance parameters is a crucial problem when making inference on the parameters
of a dynamic model. Typically test statistics have distributions which depend on those nuisance pa-
rameters so that they are difficult to interpret. A first approach to solve this difficulty consists in find-
ing consistent estimates of the nuisance parameters which are then substituted for these parameters
in the distribution of the statistic considered. However it is well known that such approximations
can be arbitrarily bad; see Park and Mitchell (1980), Miyazaki and Griffiths (1984) and DeJong,
Nankervis, Savin, and Whiteman (1992) for examples in the context of AR processes, Burnside and
Eichenbaum (1994, 1996) about Wald-type tests based on GMM estimators, Dufour (1997) for a
more general treatment of asymptotic approximation failures in the case of Wald statistics, Savin
and Wurtz (1996) for a similar discussion in the case of logit models, and Maasoumi (1992) for
some general criticisms. Consequently, when hypothesis testing is the main objective, such a pro-
cedure offers no guarantee that the level constraint in the sense of Neyman-Pearson [see Lehmann
(1986, p. 69) and Gowroux and Monfort (1989, p. 14)] be satisfied. This also makes comparisons
between testing procedures difficult.

A second approach consists in using bounds which typically lead to conservative tests. Suppose
the true critical value for our test statistic is unknown, but that it is possible to find bounds on
this value, most importantly a bound yielding a critical region whose probability under the null
hypothesis is not larger (but could be smaller) than the stated level of the test. For some examples of
such methods in time series models, see Vinod (1976), Kiviet (1980) and Hillier and King (1987).

In these cases, the bounds appear to increase without limit when the nuisance parameters approach
some boundaryg(g, the stationarity frontier in the case of ARMA processes) and/or with the sample
size so they become useless [see Dufour ande$0{t998)]. For regression models with AR(1)
disturbances, procedures which do not display this unattractive feature were proposed in Dufour
(1990); for further examples of such techniques, see also Dufour (1989), Dufour and Kiviet (1996,
1998), Campbell and Dufour (1997), Dufour, Hallin, and Mizera (1998), and Kiviet and Dufour
(1997). However, these methods appear difficult to extend to more complex dynamic models such
as ARp) processes) > 2.

In this paper, we propose an exact inference procedure for the parameters of Markov processes.
It is based on extending old but little known results stated by Ogawara (1951) for univariate station-
ary Gaussian AR{) process. Note Ogawara’s article does not contain the proof of the result, and
such a demonstration does not appear to be available elsewhere. The procedure has been extended
by Hannan (1956) to multivariate, stationary, Gaussian processes admitting a VAR(1) representa-
tion. In the two latter references, procedures are developed for making inference on the autocorre-
lation parameters of pure AR processes. Hannan (1955a, 1955b) also showed this method can be
applied to test a hypothesis on the coefficients of a linear regression model with stationary AR(1)
errors.

In this paper, we generalize and improve these results in several directions. First, the initial
results of Ogawara (1951) are extended to a larger class of processes, which includes multivariate,
possibly non-normal, integrated or explosive processes. In particular, for general Markov processes
of orderp, it is shown that the variables separated by lagp periods are mutually independent



conditional on the intercalary observatiomst¢rcalary independenggea rather surprising property

which is certainly of interest by itself. Second, we consider a more general class of models and
hypotheses which includes as special cases all the models previously treated in the earlier literature
[Ogawara (1951), Hannan (1955a, 1955b, 1956) and Krishnaiah and Murthy (1966)]. In particu-
lar, although this procedure was originally designed to make inference on the mean of a dynamic
model, we show it is also suitable for inference on the nuisance parameters, such as autoregres-
sive coefficients. Furthermore, we develop a procedure for constructing confidence regions. Third,
we propose a way of resolving the information loss due to the application of the Ogawara-Hannan
procedure. Fourth, we provide simulations results to evaluate the performance of our method.

Our procedure involves several steps. First, the sample is split into several subsets of observa-
tions. Next, on conditioning the original model on one of these subsamples, a transformed model
having the form of a two-sided autoregression is obtained,the dependent variable is regressed
on its own leads and lags. This transformed model has simpler distributional properties and allows
one to apply standard fixed regressor techniques. This is repeated for each subsample. Then a pool-
ing method described in Dufour and Tesr(1998) is used to combine the results of subsample-based
inferences and obtain a single answer based on the whole sample.

The procedures are quite easy to implement, for they only require applying standard test proce-
dures (Student, Fishet?) to a transformed model. This means that there is no need to establish
special critical points. The method is flexible enough to be easily adaptable to a wide variety of
dynamic and econometric models. In particular, we show it can easily be adapted to various setups,
such as: (1) integrated and explosive processes; (2) multidimensional processes (VAR models); (3)
various models with more general dynamic structures

The paper is organized as follows. In Section 2, we motivate and expose the procedures devel-
oped in this paper in the context a simple AR(1) model with a deterministic trend. In particular,
we demonstrate how to use a number of general results on Markov processes which are exposed in
Section 3. In Section 4, we discuss in detail how these results can be applied to obtain finite sample
inference procedures in the context of an ARgrocess. In Section 5, we consider a more general
model by introducing a drift function in the AR(1) model. In particular, we explicitly show how one
can obtain an exact test on the mean parametaiishe autoregressive coefficients. We also derive
an exact test for the order of an autoregression. In Section 6, we propose a method for improving
the performance of Ogawara’s procedure and we present simulation results. We conclude in Section
7. The proofs appear in the Appendix.

2. Anintroductory example
As an example of the procedures presented in this paper, consider the following AR(1) model

Y}:mt—l—)\Y}_l—i—ut, Withmt:b0+b1t, t:1,2,...,T, (21)

whereus, ..., ur are independent and identically distributgd.d.) according to av(0, o2) distri-
bution [henceforth denoted, "% N (0,02), t =1, ..., T].

Because such a model is recognized for describing well the dynamic behavior of many economic



time series, a large part of the econometrics literature has been devoted to estimating it and making
inferences on its parameters. One of the most investigated issue consists in testing the unit root
hypothesisH, : A = 1. Most of the (now) standard test procedures proposed in the literature use
an OLS estimate\ of ) to form a statistic which is usually a normalized versiomgf— 1. The
non-standard asymptotic distribution of this statistic is used to define a critical regidifoks
mentioned in Section 1, the lack of reliability of such procedures is well documented. We propose
here a simple approach which avoids the use of asymptotic approximations and provides tests and
confidence regions having the stated level. Although the procedure presented in this paper goes
much beyond this single issue, we illustrate it in the context of the simple AR(1) model (2.1) where
we wish to testH, : A = 1. For the sake of simplicity, we assume the sample size is odd, s@'that
may be writteril”’ = 2n + 1, for some strictly positive integer.

The method may then be described as follows. The results of this paper entail the follow-
ing properties: (1) conditionally o®oqq = (Y1,Y3, ... ,Y5,41)’, the remaining observations
Y5, Yy, ..., Yy, are mutually independent [see Theor8m]; (2) the conditional distribution of
Ya: given ®4q is identical to the conditional distribution df; conditional on(Ys;_1, Yor+1) [See
Theorem3.Z. In particular, for anyt = 1,2, ... ,n, the mean of this conditional distribution is
E(Ya:|Yar—1, Yori1) = Bymar + Bomary1 + B(Yor—1 + Yai41), SO that we may write

Yi = Byme + Bomir + B(Yeo1 + Yig1) + 1y
or, using the expression af;,
Y, = ap + a1t + B(Yi1 + Y1) +my (2.2)

fort = 2,4, ... ,2n. The coefficients, a; andS can be shown to be the following transformations
of the initial parameters:

1— X A 1— X A
:b _ _b J— , :b _ s = —F . 23
a0 0<1+/\2> 1<1+A2> “ 1(1+/\2> P=1e (2:3)

Further, the error terms,, 1, ... , 7, arei.i.d. N(0,02), conditionally on®,qq4. Now, it is inter-

esting to note that (2.2) enjoys all the properties of a standard linear regression model with Gaus-
siani.i.d. errors. Therefore, any linear hypothesis on its coefficients may be tested with usual
procedures. In particula#fy : A = 1 in (2.1) may be reformulated as a linear restriction on the
parameters of (2.2), namell&[é“) : (ap = 0 and 8 = 1/2). A simple Fisher procedure gives a
critical region with any required level for Hé“).

To illustrate the procedure, we propose the following numerical example. Following Dufour
and Kiviet (1998), a model similar to (2.1) describes the dynamics of the (logarithm of) US gross
private domestic investment in non-residential structures over the period 1952:1 to 1969:IV [see
Berndt (1991, p. 278) for a detailed description of the data]. The model is

Y = bg +b1t/100+)\Yt,1 + my + Uz - (2.4)



When the latter is estimated by OLS, we obtain= 0.92143, by = 0.87197, b; = 0.06986 with
unbiased error variance estimatdr= 4.92300 x 10~%. ) being close to 1, one may wish to test

for the presence of a unit root in the AR polynomial. According to the discussion above, one would
estimate the transformed model similar to (2.2)

Y;f:a0+a1t/100+/6(y;5+1+th—1)+77t7 t:2747"'7707 (25)

whereag, a; and g are given by (2.3), and teﬂ’é‘” : (e = 0 and 3 = 1/2). Rewriting the null
hypothesis under the fortH(g“) : R§ —r = 0 where

0 1 0 , ,
R = 00 1 75:(a07a17ﬁ)77‘:(07]—/2)7

the unit root hypothesis may then be tested at any leviey forming the statisticd" :A(R?S\l —
Y[RV (61)R']"Y(R6, — r) and using the critical regiod, > F(2,31;1 — ). Here ¢ denote
the vector of the OLS estimates of the componentgagf a;, 8)’ in (2.5), V(3,) is the usual
(“unbiased”) estimator of the variance-covariance matriﬁquand F(2,31;1 — a) is the (1 —

«) quantile of the Fisher distribution witf2, 31) degrees of freedom. Computations yield the
following results:

R 0.17965 A 0.21226 0.01775 —0.00968
1= 0.00883 |, V()= : 0.00163 —0.00081 |, Fy =0.211179.
0.49191 . . 0.00044

The p-value associated withF; is 0.8107842 so thaﬂoa) is accepted at any level less than
81.07842%.

In our example, the transformed model (2.2) [or (2.5)] UseY%, ... , Ys,, as dependent vari-
ables andY7, Y3, ..., Ys,,1, as the conditioning variables. Obviously, the results we used for
writing (2.2) may also be applied wh@ryen = (Y2,Ys, ... ,Ys,)" are the conditioning variables.
Another transformed model is then

E:ao—l—alt—l—ﬁ(}/}_l—i—}/}Jrl)—l—l/t, t=3,5,....,2n—1. (26)

The error termg/s, vs, , ... ,va,_1 are independeny (0, a%) conditionally on®¢,enand (2.6) pro-

duces another critical region with levelfor Hé“). Back to the US gross private domestic investment
in non-residential structures example, OLS estimation of

th:a0+a1t/100+5(}/t+1+th—1)+l/tv t=3,5,...,71, (27)



yields

R —0.49970 R 0.31227 0.02587 —0.01423
0o = —0.03342 | , V(62) = . 0.00234 —0.00118 | , F» = 0.563799
0.52265 . . 0.00065

with ap-value of 0.5747689 foFs.

The tests based of; and F; both agree on acceptingéa) at level 5% so that we would be
tempted to accept the null at the same level of 5%. However, the decision rule which consists of
accepting the null hypothesis when > 2 tests accept it each at lewelhas a level which is larger
to o. Such a method is the well knownduced tesprocedure [see Savin (1984)] which combines
several results from separate (although not necessarily independent) inferences. A sufficient con-
dition ensuring it has levek is that each one of the: tests which are combined has levelm
[see Savin (1984) and Dufour and Tesr{1998) for further details]. In model (2.1), we accept
Hy : A = 1 at levela whenever the tests based on (2.2) and (2.6) both accept (atlg¥ethe
hypothesisH(()a) :a; = 0 andg = 1/2. In terms ofp-values, this criterion can be reformulated as
follows: we rejectH, : A = 1 at levela when the minimum of the-values obtained from (2.2)
and (2.6) is smaller tham/2. When applied to the US investment data, it is easy to see that the null
hypothesis of a unit root is accepted at level 5% for instance.

The procedure just described is very simple as it only requires standard tabulated distribution.
Its steps can be summarized as follows. The initial model expresses the conditional mean of a
Markov process, typicallyy; = E(Y;|Y;—1) + u;. By using properties of such processes, we are
able to transform the initial model by first splitting the sample into two subsets of variables, and
then writing the conditional mean of the variables in the first subset given some of the variables in
the second subset. This leads to several transformed models skich=as(Y;|Yi—1, Yii1) + wit,

t € J;,i= 1,2, for instance, wherd; and.J, are collections of indices defining the two subsets of
variables. The testing procedure exploits the fact that, due to some properties of Markov processes,
these transformed models are standard linear regressions for which usual inference techniques apply.

In the next section, we present extensions of the theoretical results of Ogawara (1951) and
Hannan (1956). These results establish the properties of Markov processes on which the inference
procedures proposed rely.

3. Results on Markov processes

3.1. Notation

Let {X; : t € T} be a stochastic process on a probability sp@zeF, P) with trajectories in
R™, i.e. X(w,t) = (X1(w,t), Xa(w, 1), -, Xim(w, ), m > 1, t € T, whereT is an interval
of the integer<Z. The symbol =" means “equal by definition”. We assume that foria#t T, the
probability law of X; has densityfx, with respect to the Lebesgue measure/ih (the Borelo-

algebra of subsets &™). For any random vectab of conditioning variables, we denofg, ¢ (z|¢)

the conditional density okK; given® = ¢, evaluated at € R™.



It will be useful to introduce the following notations. Lgtandn be two positive integers
(p > 1, n > 1). We consider the stochastic proc€ss, : t € T} and define:

Bip= (X1, X2, o Xip) = (X4 :1<7<p), byp= (24—r: 1 <7 <),

forp+1<t<(n+1)(p+1),and

Ap = (Bs(pﬂ),p:tgsgn—l—l),at,pz (bs(p+1)7p:t§5§n+l), fori<t<n+1,

where we assume the sBtcontains 1 andn + 1)(p + 1) — 1. In other words,B; ,, denotes the
set ofp variables immediately preceding;, and A, ,, is a collection ofB; , sets. We can give the
following illustration of the way we split the variables {X; : ¢t € T} :

Xt(p+1)—ps Xe(p+1)—p+15 -+ Xt(pr1) =15 Xt(p+1) 5 X(t4+1)(p+1)—p> X (t+1) (p+1)—p+15 -+ > X (t41)(p+1)—1

Bi(p+1),p Biernyp+) e

The following notation will provide a convenient shortcut: for any T, we set

Xta .. (7’) .. 7Xt+k‘7‘ = (Xt7 Xt+7“7 Xt+21“7 .o 7Xt+k‘7‘)

for any positive integers and k such thatt + kr € T. With this notation, we may now give the
main definition.

Let{X,; :t € T} be a stochastic process ap@ positive integer. We say théX, : ¢t € T}
is a Markov process of orderonT (or {X; : ¢t € T} is Markovian of ordep onT) if it satisfies
condition M (p) defined as follows:

M(p) . th‘Xt—ky"'(l)"'vxt*l = th|Xt7p7---(1)---7Xt717 Vk S N, \V/t € T, W|th t— k € T andk 2 p.
(3.1)

Note that, forT = Z andp = 1, we have the standard definition of a Markov process.

Let X andY be two random vectors of dimensigrandr, respectively. Whenever the relevant
moments exist, the affine regression6fon Y is the random vector of sizg denotedE, (X|Y),
whosei-th component is the orthogonal projectionf on the space spanned by the affine func-
tions of Y (an affine function ofY” is a linear combination of the elements ¥fplus possibly a
constant). Ifi’ is another random vectak L Y|/ means that the residuals from the affine regres-
sions of X andY on W are uncorrelated,e. E[X — E (X |W)][Y — EL(Y|W)]'] = 0.

3.2. Intercalary independence and truncation properties

The procedures presented in Ogawara (1951) and Hannan (1955a, 1955b, 1956) exploit special
properties of Markov processes (intercalary independence, truncation), which we now study in de-
tail and generalize. The propositions below will be used to build a transformed model that satisfies



the assumptions of the classical linear model on which standard inference techniques can be ap-
plied. Further they provide interesting insights on the structure of Markovian processes, and thus
have interest by themselves. The intercalary independence property was apparently first given with-
out proof by Ogawara (1951) for univariate Markov processes, while the truncation property was
used implicitly by him (again without proof) in the context of univariate autoregressive stationary
Gaussian processes. Ogawara (1951) notes that these results have been stated without proof in Lin-
nik (1949). However no proof is given by Ogawara (1951) nor (apparently) by any other author. In
this section, we demonstrate and extend these results to multivariate Markov processes jaf order
allowing for non-stationarity and non-normality. In order to keep things as simple as possible, we
shall assume that the time index $etontains the positive integers: T O N = {1,2, ... }.

The first result we staténtercalary independender Markov processes of ordej is an exten-
sion of Theorems 1 and 2 of Ogawara (1951). The proofs are given in the Appendix.

Theorem 3.1 INTERCALARY INDEPENDENCE Let{X; : ¢t € T} be a stochastic process satis-
fying condition (p), with T 2 N. Then for any positive integer, X, 11, Xopr1), -+ » Xn(p+1)
are mutually independent, conditionally @ ,,.

Consider a dynamic model of the form
Xi=g14(Z6, X, .y Xe)He, t=1,2,... T=n(p+1)+p (3.2)

where{X; : t € T} is anm-dimensional Markov process of orgeonT = {1,2, ..., n(p+1)+p},

andl <v <71 <t—1.If {X;:t€T}is Markovian of ordep, we havet — 1 > 7 > v >t —p.
Z, is a vector of fixed exogenous variables,; i N(0,0%), i = 1,2,...,m,andg;, is a

deterministic function ilR™. If we condition (3.2) on4, ;,, we obtain a conditional model

Xt(p+1) = gQ,t(Zt(p+1)7 Al,p) + nt(p+1) ) t= ]-7 27 RN (2 (33)

in which, according to Theore®\1, the endogenous variables are independent and
E(nt(erl)‘Al,p) = O, t= 1,2, e, N

We achieve the independence at the expense of a larger number of variables in the conditional mean
of Xy(p11) (A1 instead ofX,, ...y ... , X;). However, by the following theorem, we can restrict
ourselves to consider a more parsimonious model which is distributionally equivalent to (3.3).

Theorem 3.2 TRUNCATION PROPERTY Let{X; : t € T} be a stochastic process satisfying
condition M (p) with T O N. Then

Fxinlare = FX i Burnyeino Bupsn) o
foranyt =1,2, ... ,n,Vn € N.

Note only the Markov property of the process is needed to establish these results. In particular,
stationarity and/or normality are not required. The above theorem extends a result stated without



proof by Ogawara (1951) in the context of a univariate, stationary, Gaussian Markov process of
orderp. For completeness, we state the latter as a corollary.

Corollary 3.3 INTERCALARY INDEPENDENCE FORGAUSSIAN PROCESSESLet{X; : t € Z}
be a(multidimensionagl Gaussian Markov process of order(p > 1). Then Theorem3.1and3.2
hold for{X, : t € Z} .

To see the latter corollary, we simply note that for amy thleoo,...m...,thl
IXt1 Xt oy Xt = IXX gy X1 = SXe X0 prry . X > fOr @NY s > p. Theorems3.1
and3.2 extend the results used by Ogawara to a larger class of processes. TBedsbows that,
if {X;:t € T} is Markovian of ordep, variables other than those 1y, 1), and B, ;1) (p+1)
do not appear in the conditional density ¥f,,, ) given A; ;,. For example in (3.3), this suggests
we can limit ourselves to consider a simpler equivalent model wiggg, ) only depends on the
adjacent variable$ ;| 1y(+1),, and By(,41),p » instead of the complete sé; , :

Xip+1) = 9:(Zip+1)> B+ Bepr1)p) + iy, t=12,....n,  (34)

where theX,,,1)’s are (conditionally) independent. The functigst - ) in (3.4) may be interpreted
as the “best approximation” (projection) &f;,, ) on the space spanned by (possibly nonlinear)
functions of the variables i, 1), and B(;1)p+1),,- Corollary 3.5 below gives a sufficient
condition for such “projections” to be invariant with respect tce.g, to haveg,(-) = g( - ), for all
t=1,2,...,n. We first need to introduce the following definition.

Definition 3.4 CONDITIONAL STRICT STATIONARITY OF ORDERp. Let{X; : t € T} be a
stochastic process dfi O N. We say tha{ X, : ¢t € T} is conditionally strictly stationary of order
p [denoted CS@)] if there exists a strictly positive integersuch that

th‘thpy---(l)--thfl( ' ‘ ) = fXS|X5*T—’7"'(1)"' ,Xsfl( ' ‘ )
forall s € T andt € T such thats —p € Tandt —p € T.

Corollary 3.5 TRUNCATION PROPERTY FORCSS MARKOV PROCESSESLet{X;:t € T} bea
CSS(p) process satisfying conditioh/ (p) with T 2 N. Then

th(p+1)|B<t+1)(p+1),pot(p+1),p(' ) = sz<p+1)|B<s+1)<p+1),p:Bs<p+1),p(' [-), VE>1, Vs > 1.

To see the latter property, we note that, = X, _,, ...y ... , X7—1. Then writing the condi-
tional density as

Ht(p+1)+p f
f | i r=t(p+1) / X7|Brp
Xe(p+1) [ Be+1) (p+1).p Bi(pr1).p — t(p+1)+p
f HT:t(pH) fXT\BT,pdwt(pH)

[see the proof of Theorerd.2 equation (A.4) in the Appendix], the C§S property of{ X, : ¢t €
T} vyields the result. The CS5) condition is entailed by strict stationarity. Furthermore, any



random process that admits an AfR(epresentation with.i.d. errors is Markovian of ordep and
CSSp). This will be important for our purpose, since (3.4) can be rewritten as

Xip+1) = 9 Zup+1), Baan) @+ Bip+1)p) T Mpr1y, t=1,2,....m, (3.5)

whereg no longer depends an which makes statistical inference much easier. Furthermore, for
affine, (3.5) is the classical linear regression model.

We now give two other propositions that will be especially useful when the prdcésst <
T} has an AR representation.

Theorem 3.6 TRUNCATION PROPERTY FORAR PROCESSESLet{X, : t € T} be a Markov pro-
cess of ordep onT D N. Then for any integeq > p, we havefx, B, 1., ..Bi.c = /Xi|Bis1ippBrps
vVt > q+ 1.

Corollary 3.7 PROJECTION TRUNCATION FORAR PROCESSESLet{X; :t € T} be a Markov
process of ordep on T, whose elements have finite second moments. Then, foy angh that
q > p, we haveE| (X;|Biy14q,q, Btq) = EL(X¢|Bty11pp, Btp)-

In the context of random processes which satisfy only second order properties analogous to
those of Markov processes, results similar to intercalary independence and truncation hold. These
are given in Theorem3.8and3.9.

Theorem 3.8 INTERCALARY ORTHOGONALITY. Let{X; : ¢t € T} be a random process with
finite second moments such that

Xe (X1, oe(1) o+ s Xep1)|Biyp-
Then
Xt(p+1)J-Xs(p+1)|A1,p7 Vt Z 1, \V/S 2 ]., t # S.

Theorem 3.9 INTERCALARY ORTHOGONAL TRUNCATION Let{X; : t € N} be a random
process with finite second moments such that

XtL(Xl,...(l)... , Xt—p—1)|Btp -
Then for allt > 1, we have

Xi(pi 1) LBspa1),p| [Bie1)pr1)p > Bepr1yp) » VE>1, Vs> 1, s£tands £t +1.

In the next section, we apply the above results to derive exact inference procedures for the
parameters of the original model (3.4). We start with AR(1) processes. We then consider a Markov
process of order 1 admitting a more general dynamic representation, which includes the classical
linear regression model with AR(1) errors as a special case. In a subsequent section, we shall derive
an exact inference procedure in the context of Markov processes oforder



4. Exactinference for AR(1) models

In the previous section, we showed how to use Theorgrhand 3.2 to derive a time invariant
transformed model (3.5) from the initial model (3.2). If we wish to make inference on the parameters
of (3.2) via those of (3.5), we must establish in a more explicit way the relationship between the two
models. We can transform (3.2) into (3.5) by using two sorts of projections{Y;ett € T} be a
Markov process of ordaronT = {1,2,...,n(p+ 1) + p}. The first kind of projection is suggested
by the results of Section 3. It is the projectiondf, ;) on the space generated by the functions
of the variables inBy (11, and B 1)p+1),p (Or the conditioning ofY;,, 1) upon By, 1), and
Bi41)(p+1),p)- Unless normality is assumed, this projection is likely to be nonlinear and difficult to
establish. Moreover, ifY; : t € T} is not CS$p), we have no guarantee that this projection will
be identical for alk.

The second type of projection is the affine regressiol,gf, ;) on By(,11),, aNdByy1)(p+1),p-
The resulting model is linear by construction and the relation between the initial and transformed
parameters is likely be simple enough for inference. A sufficient condition (although not necessary,
as we will see in the case of AR(1) processes) for this relation to be time invariant is weak station-
arity of the procesgY; : t € T}. However, our objective is to make exact inference and we will
need to specify the probability distribution §¥; : ¢ € T'}. We will then assume thdty; : ¢t € T'}
is a Gaussian process. In that case, the two projections coincide.

In this section, we show how the results of the previous section can be applied to obtain exact
tests and confidence regions on the parameters of an AR(1) model.

4.1. Model transformation

Suppose the scalar procgss : ¢t € T}, whereT = {1,2, ..., T} andT = 2n + 1 for some integer
n, admits the following representation:

Y, =Y +e, & & NO6Y, teT, (4.1)
with Yy given andg € R. If we assume the;’s are normally distributed, thefly; : t € T}is a
CSS(1) Markov process of order 1 an We are now ready to apply the results of Section 3. The

conditional distribution ofYy; given (Y211, Y2;—1) is normal, for allt = 1,2, ... ,n. Its mean is
given by the affine regression %, on (Y211, Y2;—1) and takes the form

EL(Yor|Yori1, Yor—1) = a+ B Yorp1r + BoYor—1, t=1,2,...,n.
The following theorem shows that|ip| < 1, theng, = (g, = 3.

Theorem 4.1 REGRESSION SYMMETRY FOR WEAKLY STATIONARY PROCESSESLet {X; : ¢

€ T} be a weakly stationary univariate stochastic process. For all strictly positive integers
the coefficients o, and X;_j in the affine regression ak; on (Biypt1,p, Btp) are equal,
1<k<p,foralt>p+1.
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Expressions fop anda are derived in the Appendix where it is shown tifat= ¢/(1 + ¢?)
anda = 0. The variance of the residuals from the regressiartj§ 1 + ¢?). These expressions are
valid for any¢ € R. Starting from (4.1), the equivalent of the transformed model (3.5) is

2

e 214 . (4.2

YQt:ﬁYé;—i_thv t:1,2,...,n, n’(Yﬁ,t-l,Q,,n)wN[O,W

whereYs, = Yo1 + Y1, t =1,2, ... ,n,m = (99,4, ... N9,) @ndl, is then x n identity
matrix. (4.2) is a Gaussian linear regression model from which we can easily estiraatt make
exact inference on it. In particular, using the usual critical rediotr) = {[t(3,)| > t1_a/2(n —
1)}, with £(3,) = (3 — 8,)/V (B)'/2 where3 and V(3 are the usual OLS estimators gfand
V(B), we can test any hypothesis of the fody : 3 = 3, againstH; : 5 # [,. This test has exact
level a.

4.2. Exacttests onp

Since(1+¢%)3 = ¢, the relation between the “initial” parametgand the “transformed” parameter
G is given by¢? — ¢ + 6 = 0. In order to make inference of using model (4.2), we need to
examine the roots of the polynomialz) = x> — z + 3 = 0. Since¢ is assumed to lie iR,
we discard complex roots, obtained with| > 1/2. If we also exclude the trivial casé = 0

which yields¢ = 0, the roots ofq(z) arez; = (1 + Aé/Q)/Qﬁ, o (1 — Aéﬂ) /2/3, where

Ay=1- 42, Sincexzo = 1, we havesign(z1) = sign(zz) andz; > 1 <= x; <1, 4, j =
1,2, i # j. Hence, withg # 0 and|3| < 1/2, two values ofp only are identified in (4.2). These
values are 1 and-1 which are respectively equivalent to= 1/2 and = —1/2. In other words,
given ana priori value for 3, we can decide whether the process is integréted = 1), but, if
not, we cannot distinguish a stationary procégg < 1) from an explosive procesgy| > 1).
However this identification problem can be avoided by excluding explosive processes. This should
not be a too restrictive practice if we admit that macroeconomic time series are usually integrated
or stationary. The case whefe= 0 corresponds to a white noise procdss,¢ = 0.

From the point of view of hypothesis testing, we have established the equivalence of each one
of the null hypothese#ly; : ¢ =0, Hpe : ¢ =1, andHpz : ¢ = —1, with H3;, : 8 =0, Hg, :
B = 1/2, andHy; : B = —1/2, respectively. For thesa priori values of¢, we have derived
an exact test procedure. For other valueg ofve can still consider the test éf; : 3 — 5, = 0
which corresponds to the test & : ¢ € {xo, xgl}, wherex is the first root ofy(z), evaluated at

B = Bo-

4.3. Exact confidence sets fop

Itis easy to build an exact confidence interval at levek for the parametes in (4.2). Suppose the
random variableg; andcs satisfyc; < ¢y with probability one an®® ({¢; < g} N {8 < e2}) =
1 — a. Since the eventéc; ¢* — ¢ +c¢; <0} N {cad® —d+co >0} and{c; < B} N{B < co} are
identical, the sef¢ : ¢;¢* — ¢ + c1 < 0andca¢® — ¢ + co > 0} is a confidence region fas with
level1 — «.. To characterize this region in the space of the parametere need to find the roots of

11



Table 1: Confidence regions for the autocorrelation parameter of an AR(1) process

[ (—o00,—1/2) —1/2 (—1/2,0) 0 (0,1/2) 1/2 (1/2,00)
c1

(—o00,—1/2) %] {1} [#1,22] (—00,0] (—00,21]U[z2,00) R R

—1/2 {1} [z1,22] (—00,0] (—00,21]U[2z2,00) R R
((7oo,w1]u[x2,oo)) ((7oo,m1]u[zg,oo)> ((7oo,w1]u[x2,oo)) (—o0,z1] | (—o0,z1]

(—1/2,0) n n n u u
[21,22] (—00,0] ((—00,21]Ul22,00)) | [w2,00) | [w2,00)

[0,00)

0 {0} n [0,00) [0,00)

((—oo,zl]U[zg,oo))

[1,22]

(0,1/2) n [z1,22] [z1,22]
((7oo,z1]u[22,oo))
1/2 {1} {1}
(1/2,00) %]

Note 1_z;, i = 1, 2, are the roots of; (z), andz;, i = 1, 2, the roots ofg2 ().
Note 2_ Empty cells come from the inequality < cs.

the polynomialsy;(z) = c¢;z? — = +¢;, i = 1,2, whene; andc, are treated as constants. We can
then distinguish the following cases.

1. If |e1] < 1/2, the polynomialg; (z) has two distinct real roots denoted andx2, and we
can assume that; < z,. If —1/2 < ¢; < 0, theng;(xz) < 0ifandonly ifz € (—o0,z1] U
[£2,00). If 0 < ¢1 < 1/2,qi(x) < Oifandonly ifx € [z, 2z2]. If ¢; =0, ¢1(z) < 0if and
only if z € [0, 00).

2. If |e1] = 1/2, ¢1(x) has only one root. In this case, when= 1/2, ¢;(x) < 0if and only if
xz =1,and wherr; = —1/2, ¢;(z) < Oifand only if x = —1.

3. If |e1] > 1/2, ¢1(x) always takes the same sign @ If ¢; < —1/2, ¢1(x) < Oforall z € R;
if ¢; > 1/2, no real value of: satisfiesy; (x) < 0.

Similarly, we determine the regions & on whichgs(z) > 0. The different possibilities are sum-
marized in Table 1.

5. Extension of the AR(1) model

In this section, we extend the procedures described in the previous section by considering more
general processes. L&Y, : t € T}, whereT = {1,2, ... ,T = n(p + 1) + p}, be a random
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process with the following representation:

AB)Y, =my+e, e 0,02, t=1,2,...,T,

(5.1)
AB)=1-YY  NBY, withYy, Y_q, ..., Y 4 fixed,
whereB is the backward shift operator, is an exogenous componeat= (e1,¢2, ... ,er)’, and
& ind (0,02), t=1,2, ..., T, means the,’s are independent with common me@&and variance

o2 . Taking expectations on both sides, we obtAiB) M, = m, , whereM, = E(Y;). Define the
process(X; =Y; — M, : t € T'}. Clearly,{ X, : t € T'} satisfies

AB)X,=¢, & ™ 0,02, t=1,2 ...,T, (5.2)

i.e. {X; :t €T} isazero mean process which admits an AReépresentation, where the dis-
turbances; , t € T, are independent with common mean zero and variadc€onsider now the
case where = 1. We have

Y, =my + Ao 4+ e, o 20,02), t=1,2....,T.

This representation includes as particular cases a wide range of models frequently used in econo-
metrics. In particular: (1) ifn; = 0, V¢t € T, and\ = 1, we have the random walk model; (2) if
my = by, V¢t € T, and\ = 1, we have arandom walk with drift; (3)ifi, = b(t) = "I, b;t, Vt €
T, the process contains a deterministic polynomial trend. In what follows, we assyrhas the
formm,; = ZkK:O bp 21, WhereZy, Z1, ... , Zi are exogenous variables.

Since{X; : t € T} has an AR(1) representation, application of the procedure described in
Section 4 is straightforward. The projectiongg[ X o |( X241, Xot—1)] = B(Xai+1 + Xor—1) With
B = A/(1+4 A?) and we consider the following transformed mode!:

Xor =0BX5 + 19, t=1,2,...,n, m~(0, 0727[”) (5.3)
whereX3;, = Xor 1 + Xor1, 07 =02/(1+ A?) andn = (13,74, - .. ,72,)'- (5.3) can be written
Yot = Moy — B(Mapy1 + Mog—1) + BY5; + 1oy
With Yz, = Yar1 + Yor_1. Now, withm; = M, — AM,_; and3 = A/ (1 + \?), (5.3) becomes
Yor = Bymay + Bomarr1 + Y9 + 1o, t=1,2,...,m,

in which g, = 1/(1 + )\2), By = —0. Finally, sincem; = Zfzo b Z1 +, the transformed model is

K K

Yor = BY5 + > 01kZrar+ Y OokZroeir + Ny (5.4)
k=0 k=0
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whered, = by,/(1+ A?) andfs, = —Abi/ (14 A?). Using the matrix notation, (5.4) is equivalent
to

vi=2Z76+n;, t=12...,n, (5.5)

Wlth vy = Y2t7 Z;fk = (Z2t7Z2t+17}/2>;),7 6 = ( /17 ,27 ﬁ)lu 91 = (e’i,O?ei,lu 79i,K)/7 1 =
1,2. If we assume that) is normally distributed, we can perform exact testshoand/orby, k =
0,1, ..., K. This is done in the next section.

5.1. Exact confidence sets and tests ép

As we showed, the parameters of (5.5) must safisfy= —b,5,k = 0,1, ... , K. The hypothesis
b, = by is therefore equivalent t6,, + b3 = 0 which can be tested in (5.5) by a standard
F procedure. Furthermore it is well known that the set of all valesuch that the hypothesis
Hy : 09, + bo3 = 0 is not rejected at levek forms a confidence region fdy, at levell — a.
Using the same relation between the transformed paramgteend 5 and the initial parameters
br,k=0,1, ..., K, any linear hypothesis of the for®b —r = 0, whereR is a knowng x (K +1)
matrix with rankg, r is a knowng x 1 vector andb = (b, b1, ... ,bx)’, can be tested at level.

To see how to exploit the relation between the two sets of parameters, note that

Rb—r=0 < RO,+1r=0 < R6=0

whereR* = (0, R, r) so that a test oRRb — r = 0 is equivalent to a test ak*§ = 0. Again, this
is a hypothesis on the parameters of (5.5) which can be tested with thefupuatedure.
5.2. Exact tests om

The components of in (5.5) must satisfyo, = —61,A\,k = 0,1, ... ,K andg = \/(1 + )\2).
From these relations, we see that a teshceE )\ is equivalent to a test of the joint hypothesis:
O + Nob1x =0, k=0,1, ... ,K, andB = Ao/ (1 + \o?). Using matrix notation we can easily
write this set of restrictions as a linear hypothesis on the parameters ofi(&.5%3 = r( with

b= Mlgt1 Ik41 O - 0
- 0’ o 1) T\ N/O+Xr?) )

Unlike for the pure AR(1) process of Section 4, we are now able to obtain a test fa pngri
value \q of the autocorrelation parametgr

5.3. Exact confidence sets fok

In Section 4.3 we showed how to build an exact confidence region far level 1 — «. This

confidence region, denotely 1 (y, ), satisfiesP[{y : Cri1(y,c1) > A} = 1 — a; or
P[AK_H(Ctl)] =1- aq, WhereAK+1(a1) = {y : CK+1(y,a1) > )\}, Yaq € (0, 1).
Similarly, we can also use the relatiéh, + A0, = 0,k = 0,1, ... , K, to derive an exact

test of Hy : A\ = \g. This hypothesis is equivalent # 1.(\o) : ar(A\o)'d = 0, whereay(z) =
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(m;ﬂ, U1 0), 1; being thel-th vector of the canonical basis &*+!, z € R. The set

Ci(y, o) of all values), of A such thatH (o) is not rejected at level; is al — «; confidence
region forX. ThereforeP [4;(a1)] = 1 — aq, whereAg (o) = {y : Cx(y, 1) 2 A}. Since this
condition holds for anys = 0,1, ... K, we can combine these regions to form a single confidence
region for A which has levell — «. Clearly, we have

K+1

P ﬂ Ak(al)
k=0

=1-P

K+1
U Ak (041)]
k=0

where Ay («y) denotes the set of ajl which are not ind,(«; ), and

K+1 K+1

P U Aulan| < Y- P [Aulan)] = (& +2)as.,
k=0 k=0
hence
K+1
P Aelar)| =1~ (K +2)eu
k=0

and choosingy; such thatv; = o/(K + 2), we get

K+1

Pl Aklar)
k=0

>1—q.

But ! Ap(ar) = {y S Oy, 1) 2 A} . This shows thaC'(y, o) = NEE ¢ (KLH)
isal — a confidence region fok.

5.4. Exact tests of joint hypotheses

Itis also possible to use (5.5) to derive an exact test of a linear hypothesis on the(x)ett@?)’)/ ,
whereb(™) is anm x 1 subvector ob. Consider the null hypothesis

Hy: )= X andRb™ —r =0

where R is a knowng x m matrix with rank ¢, r is a knowng x 1 vector andb(™ =

(bky, bksy, - - - br,,)'. The following equivalences hold
A=A o+ Mob =0, k€Ki | 1,05 + \I1,,0™ =0
Rb™Mm _yr =0 RbMp —r3 =0 Rﬂgm) +r6=0
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wherek,,, = {k1, ka, ... km}, 0™ = (0ip,, Oinys - - Oix,,)', i = 1,2. Defining

r

— Ly Aolm O (m) — m

we see thatH, is equivalent toQé™ = 0. Finally H, appears as a linear hypothesis on the
A~ ~ /

parameters of (5.5):H, : Ré* = 0 with R = (Q 0), & = (6(’")’, 5)7”(’) , ol =

(015 O, k & K,,) . Once again, the standard Fisher procedure solves the problem.

5.5. Linear regression models with AR(1) errors

We now show that model (5.1) wiih= 1 includes as an important special case the linear regression
model with AR(1) errors. This model is given by

Yi=my4+u, u=ow_1+¢e, t=12,...,T,
with e¢ b N(0,02) andug given. An alternative form of this model is
Yi=my+ou_1+¢e, t=12,...,T.
Sinceu; =Y; —my, t=1,2,...,T, wehave

Y},:m:'f‘ébyt—l‘f‘Eta t:2737'°°7T7 (56)

wherem; = m; — ¢my_;. It is now clear that this model is a special case of (5.1). The proce-
dures developed in the previous sections therefore apply to (5.6). In particular, exact inference in
integrated AR(1) models is available.

5.6. Ateston the order of an autoregression

We now turn to another kind of inference problem. We are no longer interested in inference on the
components of the mean vector or autocovariance matrix, but rather on the order of the autoregres-
sion in AR(p) models. There is a situation in which Theor@&® and its corollary are of special
interest. ConsidefX, : ¢t € T} , a stochastic process for which we know that one of the following
representations is true:

®(B)X; =¢;, Where®(z) =1— ¢z — dpz® — - — ¢, 2",
U(B)X; =v, whereU(z) =1—11z—gz® —-- —1p,, 2,

wheree; and v, are both Gaussian white noises amd # p, (we setp; < ps2). Suppose we
wish to testHy : {X; : t € T} ~ AR(p1) againstd; : {X; : t € T} ~ AR(p2). If Hy is
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true, then{X; : t € T} is Markovian of orderp;, and we know from Corollang.7 that the
coefficient of X in the affine regression of; on ps leads ang lags will be zero for any such

that|r — t| = p1 + 1, ... ,po. Since the affine regression is a classical linear regression model,
standard inference procedures apply. From the exposition of the procedures, it is clear that splitting
the sample entails an information loss. We may then suspect the tests to lack power. We investigate
this issue in the next section.

6. Combination of tests

One of the purposes of this paper is to improve the Ogawara-Hannan testing procedure. In the
previous sections, we showed that Ogawara’s results can be extended to a much wider class of
processes than those considered in Ogawara (1951) and Hannan (1955a, 1955b, 1956). We also
showed one can use these results to obtain finite sample inference procedures for a wide variety of
econometric models. However, when we apply those, we are led to leave one half of the sample
apart, at least. In this section, we discuss methods that allow one to make use of the full sample. We
also present simulation results which show our method performs better than that of Ogawara and
Hannan.

6.1. Theoretical results

Consider a statistical model characterized by a family of probability laws, parameterizéd by
P = {Py,0 € O}. Suppose we wish to te¢f, : P € P, againstH; : P € P \ Py. If the model
is identified, which will be assumed, this amounts to tHgt: § € Oq againstH; : 8 € O,
wheref € ©9 <= Py € Py. Assume we haven statisticsT;,i € J = {1,2, ... ,m}, that
can be used for testing/y. Further assume that undéfy, Py [{y : T;(y) > t}] is known, for all
t € R,i € J. The relation between these statistics is typically unknown or difficult to establish.
We wish to combine the information provided by each of thesstatistics on the true probability
distribution of the model.

A natural way of doing this is to proceed as follows. Using thestatisticsT;, we build m
critical regionsW; (o) = T; ' ((ti(c;), 00) ), where thet;(o;)'s are chosen so thé [W; ()] =
a;. We rejectH, with a test based an theth statistic ify is in W;(«;), or equivalently if the
observed valug; of T; is in (¢;(«;), 00) . Consider the decision rule which consists in rejecttfig
when it has been rejected by at least one of the tests based pstatistic. The rejection region
corresponding to this decision rulelig,. ; W;(«;). This test is called amducedtest of H, [see
Savin (1984)]. Its size is impossible or difficult to determine since the distribution of the vector
(Th, T, ... ,Tm)’ is generally unknown or intractable. It is however possible to choose;thso
that the induced test has level We have

Po| U Wila)] <Py Wile)] < 3 o
ieJ ieJ ieJ

and so we only need to choose thés so that they sum ta. To our knowledge, there is no criterion
for choosing they;’s in a way that could be optimal in some sense. Without such a rule, we will set
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a; =ag=ca/mforallie J.

It is difficult to compare the power of am level test based on a single statisficwith that of a
« level induced test. The latter uses the information provided by the whole sample, but is obtained
by combiningm tests of levekv/m only, whereas the former has level> «/m, but only exploits
a subsample. In other words, with respect to power, what can be gained from the larger sample size
on which is based the induced test could be lost because the levels of the individual tests combined
are lower €.9, a/m instead ofa). We now present simulations that reveal the power increase
associated with combining tests.

6.2. Power simulations for AR(1) processes

Let{Y;:t €T}, whereT = {1,2, ... , T}, arandom process admitting an AR(1) representation
Y=Y te, & & N(0,Ir), teT, (6.1)

with Y, given. For the sake of simplicity, we assume tfiats even withT = 2n. Since{Y; :

t € T} is a Markov process of order 1, the results of Section 2 apply and we know that: (1)
Yor, t = 1,2, ... ,n — 1, are mutually independent, conditionally (®7,Ys, ... ,Y2,-1); (2)
Yore1, t = 1,2, ... ,n — 1, are mutually independent, conditionally (&, Yy, ... ,Y2,). If we
define two subsets of, J; = {2,4, ... ,2n — 2} andJ; = {3,5, ... ,2n — 1}, we obtain two
transformed models of type (4.2):

Y, = ﬁ(nﬁ-l‘i‘n—l)"kmtv ted,, niNN(O,U%Im) (6.2)
wheren;, = (n;,,t € J;), i = 1,2, andn; = n — 1, ny = n. In each of these two models it
is possible to tesH : A = )¢ at levela/2, as shown in Section 4. We combine these two tests
according to the procedure described in 6.1.

In our simulations, we proceed as follows. We considlgr= 0, 0.5, 1 andT = 100. For
a setV'(\g) of S values of\ in a neighborhood of\,, we simulate a sample of siZgé from the
AR(1) process (6.1). Then we form the two subsamplgs: ¢t € J;), i = 1,2, from which we
testHy(B,) : B = By in the transformed model (6.2), with, = Xo/(1 + A3). For purposes of
comparison, these tests are performed at levels 5% and 2.5%. The two 2.5% level tests are combined
to give a 5% level induced test. These computations are repeated 1000 times, for each walue of
in V(X\o). The number of rejections dfly(3,) gives an estimation of the performance of the test.
Results are shown in Figures 1 to 6 where the solid line (—) represents the 5% induced test and the
dashed line$——) and(— - —) represent the 5% subsample-based tests.

Figures 1 to 3 display the estimated power function Xo= 0, 0.5, 1 respectively, whereas
the last three (Figures 4 to 6) show the differences of rejection frequencies for0, 0.5, 1
respectively. More precisely these differences are computelasiber of rejections offy(3,)
with the induced test Number of rejections aff, with the test based on subsample : ¢t € J;),:
i=1,2.

Apart from the case wherk, = 0, the combination method leads to a power increase, relative
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to a 5% level test based on a subsample. Whker= 0, the power loss from combining is about
8% at most, which appears small. Fay # 0, it is important to note that the valuesand \~*
yield the same value df in (6.2). For examplé. = 0.5 and A = 2.0 both yield3 = 0.4. In other
words, unless we impose restrictions suchs< 1 or |\| > 1, the value of5 does not completely
identify A. This explains the presence of the mirror peak at 2 [Figure 2].

7. Conclusion

In this paper we proposed a method allowing one to make finite-sample inference on the parameters
of autoregressive models. This was made possible by special properties of Markov processes. The
conditions under which such results hold are very mild since their demonstrations only require the
existence of density functions. In particular, they are general enough to be applied to multivariate
and possibly non stationary and/or non-Gaussian processes. However, with the addition of condi-
tional stationarity and normality assumptions, we were able to use these properties to derive exact
tests and confidence regions on the parameters of AR(1) models. In order to apply our procedure, it
is necessary to split the sample as two subsets of observations. Our simulations in the case of a pure
AR(1) model showed that a combination of separate inference results based on these subsamples
generally leads to an improvement in the performance of the procedure.

Our method displays several attractive features. First, since it is exact, it controls the probability
of making a type | error. Second, it is readily applicable to a wide range of econometric specifica-
tions of AR(1) models. In particular, it can be used to deal with random walk models, models with
a deterministic mean expressed as a linear combination of exogenous variables, including polyno-
mial deterministic trendsetc Third, the critical regions are built from standard distributions which,
unlike most asymptotic procedures, do not change with the sample size and/or model specification.
Finally, Monte Carlo experiments show that it has good power properties. For those reasons, we
think that our procedure should be considered as a good alternative to asymptotic inference methods.

In Section 6, we argued that simulations of power functions were necessary because we could
not saya priori whether the combination method yields more power. Indeed, on the one side we
make use of the whole sample when combining, but on the other side we must lower the bound on
the probability of making a type | error (the level) in each of the tests we combine. The former
should increase the performance of the procedure whereas the latter should decrease it. The method
is easily transposable to higher order autoregressive models and it appears quite plausible the same
effect will take place in more general processes. It would certainly be of interest to study this issue
further.

Of course, the finite-sample validity of theand F'-type tests described in sections 4 and 5
remain limited to models with Gaussian errors. As usual, these procedures will however be asymp-
totically valid under weaker distributional assumptions. Further, it is of interest to remember that
the general theorems on Markovian processes given in Section 3 hold without parametric distri-
butional assumptions. In particular the conditional independence and truncation properties do not
at all require the Gaussian distributional assumption, hence opening the way to distribution-free-
procedures. Similarly the test combination technique described in Section 6, which is based on the
Boole-Bonferroni inequality, is by no way restricted to parametric models. For example, the lat-
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ter might be applied to combine distribution-free tests or bootstrap tests [see Nankervis and Savin
(1996)] which accommodate more easily non-Gaussian distributions. Such extensions go however
beyond the scope of the present paper.
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A. Appendix: Proofs

A.1 Proof of Theorem 3.1 We must show that

FX 1) wtprny s KnrnlArp = H FXupan|Avry -

The following equality is always true

n

FX ) ety XnprlAre = fXpanlAny Hth(p+1>|A1va<p+1>~~~<p+1>~~7X<t—1><p+1) - (A

Consider the-th term of the product in (A.1) fot > 2 :

th(P+1)|A1,P7X(p+l)7"'(p+1)"' Xt—1)(p+1) th(p+l)|X17"'(l)"' Xip+1)—1,At+1,p

. th(erl)vAt‘Fl,P'Xl7"'(1)"'7Xt(p+l)7l (A2)
fAt+1,p\X1,---(1)---,Xt(p+1)—1
The numerator in (A.2) can be written
th(p+1)7At+l,p‘le---(1)---7Xt(p+1)—1 = /.../th(p+1)7"'(1)"'7Xn(p+1)+ple"'(l)"'vXt(p+1)—1

AT (1) p41) - (1) -+ > Tn(p1))

n(p+1)+p

= / H IX X000y X UE 1) (pt1) 5 - - (1) -+ > Tt 1))
s=t(p+1)

n(p+1)+p

= / H fX [ Xs—pyeee(1)--- d(x(t—i—l)(p—i-l)a ce(p+1) - - 7xn(p+1))

s=t(p+1)

where the last identity follows from the Markovian propeft/(p). Set

g1 (at—l—l,pv xt(p+1)) = th(erl)7At+1,p‘le---(1)~~~ 7Xt(p+1)71 (at—I—va xt(p+1)) .
Similarly, we can write the denominator of (A.2) as

n(p+1)+p

fAt+1,IJ‘X17---(1)~"7Xt(p+1)71 = // H sz|Xq —pie X 1d(xt(p+1)7 cee(ptl) s ’x"(erl))

s=t(p+1)
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and we denot@z(at+1,p) = fAm,p\Xl,...(l)... 7Xt(p+1)_1(at+17p). Clearly, neithetg: (ai+1,p, Te(p41))
nor go(a¢+1,) depends o X, 1), - (pt1) - - - » X(¢—1)(p+1))- Therefore these variables do not
enter the ratio (A.2) and we may write theh term of the product (A.1) fot > 2 as

FXupr0| A1 X1y X nypr1) = T XuprnlArs -
Since this is true for any= 1,2, ... ,n, we can factor the conditional density as
FX i1y oy Xngrny [ Arp = Hth(pH)lAl,p

which yields the result to be proved. Q.E.D.

A.2 Proof of Theorem 3.2 From TheorenB.1, X1, Xo(p11), - -+ » Xp(p+1) @re mutually in-
dependent conditionally oA ,, hence

th(p+l)|A1,p = th(p+1)‘X17"'(1)"' Xt (1) — Xt (p 1) 415 +(1) - s X (n41) (p+1)

th(p+1)7"'(1) s X (D) (pr 1) [ X 1o (1) o s Xt (pr1) 1

FXupr i1 Xt 0 X Kepi1) 1

th(p+1)7"'(1)"' Xt 1) (p+ 1) [ X1 (1) Xt (pr1)—1

fth(p+1)7"'(l)"'7X(n+1)(p+l)‘Xlr"(l)"'7Xt(p+l)—ldxt(p+1)

H(n+1 (p+1) f
s=t(p+1) I Xs| X1,y X1

n+1 +1
st t(p)J(rpl )fX | X150 (1) s X5 1dxt(l7+1)

s= tp+1 Xs |X5 preee(1) -+ Xs—1

(n+1)(p+1)
fl—-[s t(erpl sz‘Xs prees(1)- X ldxt(p+1)

(A.3)

where the last equality is derived using the Markovian prop&ftp). The product of conditional

densities in the numerator of (A.3) can be splltteq_[ig*;fl“ Ix,|B,, = G1 X G2, Wwhere
(t+1)(p+1)—1 (n+1)(p+1)
Gy = H TXo X proty o Xon » G2 = H TXo1X o prty o Xoor -
s=t(p+1) s=(t+1)(p+1)

Clearly, G2 does not depend oi,,,, 1. Therefore, the ratio (A.3) simplifies as

Gy

th(p+1)\A1,p = m . (A.4)

Now, due to the Markovian property/(p), any of the conditional densities in the proddét can
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be ertten a#XS|X5,T_,,...(1)... 7)(5,1 = fXS|Xt(p+1)_p,...(1)...,X5,17 s = t(p+ 1)7 t(p+ ]') + 17 AR (t+
1)(p + 1). Therefore it is easy to see that

(t+1)(p+1)—1

Gi= JI X ey X
s=t(p+1)

= Xupr1y ) X o)1 K1) - Kepin -1

Hence

/Gldxt(p“) = i1y X a1 K1) -pre Kepin -1

and

th(p-I—l) A1y = m

= FXupin) X1y pree (1 Xt 1)1 X 1) 415001 X 4 1) (1) 1

Since Xy(p11)+1 = X(141)(p+1)—p, WE Can use the notation of Section 3.1 to wifte

K . . (p+1)|A1,p =
) which is the desired result. E.

IX 1) Bupir) o By (o1

does not depend oHl;_ and

A.3 Proof of Theorem 3.6 We need to show thaty, s, , B, . 1.,
Xiyr,forr=p+1,p+2,...,q. We have:
- thth+q+1,q\Bt,q _ thvBt+q+1,q|Bt,q

th|Bt+ 41, Bt,q — = :
B IBitqs1.4Bea fthvBt+q+1,q|Bt,qut

Now, using the fact thafX; : ¢ € T} is Markovian of ordep, the numerator of this last term can
be Writtenfx, B\, 1141Big = /X1,y Xeral Brg = | fx.|B.,, SO that

t+q t+q
f _ Hs:t szlBs,p _ Hs:t szlBs,p
Xt|Bt1q+1,9:Bt,q — f Ht+q

= ” "
s=t fX‘S‘B‘S’pdxt (HS:?H-p—‘rl sz‘Bs,p> ( f HTZI; fX‘r‘BT,pdxt)

t+
Hs:g sz‘Bs,p

JTIE Fx.dee
It is easy to see that the variabl&s witht +¢>s>t+p+1landt—p—1> s>t — gdonot
appear in the latter expression. Q.E.D.

A.4 Proof of Theorem 3.8 Let{Y; : t € T} be a Gaussian process having the same first and
second order moments &X; : t € T} . Then{Y; : t € T} must also satisfy the condition in the
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theorem
Vid(V, ooy Yep-)[Yeepy ooy - Yic1, VE=p+1,

which is equivalent to the Markovian conditigﬂg}t‘Yhm(l)___7YH = fYt\thp,...(l)...,Y,sfl , Vit > p+1,
since{Y; : t € T} is Gaussian. From TheoreB1, Y, 1,...(p1) .-, Yn(pt1) are mutually
independent, conditional omly , whereAYp is defined likeA; , in Section 3.1 withX replaced by
Y. Using the normality of ¥; : ¢t € T} , this is equivalent to

Yip+1) LYso41) |A1p, Vt,s suchthatl <t,s<n,t#s.

This is a condition on the first and second order moment&ypf: ¢ € T} , which must also be
satisfied by the first and second order moment§Xf: ¢t € T} . Hence, ifA; ;, denotes the set of
X variables as defined in Section 3.1,

Xt(p+1)J_Xs(p+1)|A1,p, Vt,s suchthatl <t ,s<mn,t 75 S.
Q.E.D.

A.5 Proof of Theorem 3.9 Let{Y; :t € T} be a Gaussian process having the same first and
second order moments &X : ¢ € T}. From the proof of TheorerB.8, we know that(; : ¢t € T}
must also satisfy

fYt|Y17---(1)---7th1 = vatD/tfpw---(l)---vatfl , Vtzp+1.

Then, from Theoren3.2, we have

vVt suchthatl <t <n
fYt(p-&-l)|A1 fo(p+1)|B (t+1)(p+1),p’ t(p+1) ’ - =

where for anys, ng = (Ys—ps---(1)---»Ys—1). Since{Y; : t € T} is Gaussian, this condition is
equivalent to
Y Y
Yip+1) L Bsipra) <B<t+1)<p+1),p’Bt(p+1),p)

forallt > 1 ands > 1 such thats # ¢t ands # ¢ + 1. Since this is condition on the first and second
order moments ofY; : ¢t € T} , it must also be satisfied by those{oX; : ¢ € T}. Q.E.D.

A.6 Proof of Theorem 4.1 Ep [Xy[(Biipi1p Bip)] = EL [ Xl (Brypr1p, Bi,)] is the affine

regression ofX; on (Byyp41,, Bip), WwhereB; | = (X,_p, Xy pi1, ... , X,—1). The matrix of

the coefficients of this regression is given \Dy2\1122 , where

‘1’12 = Cov [Xt, (Bt+p+1’p, B;p)] y \1122 = V [(BterJrl’p, sz)] .
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We patrtition these matrices in the following way:

Ain Agp
Uig = (01 02) , Yoo =
Ag1 Ao

where

A1 =V (Bipirp) . An=V(B],), Ay = Az = cov(Brpiip, Bip)

Ci = cov(Xt, Bt+p+17p), Cy = cov (Xt, sz).

Since{X; : t € T} is weakly stationary’; = Co = C andA;; = Age = A;. We next show that
A9 = A9y, i€, Ajg is symmetric. Théi, j)-th element of this matrix is

COV(Xpppt1—is Xe—ptj—1) = Vitapti-itip—jt1] = V|2(p+1)—(i+9)|
wherey|,_y = cov(Xs, X¢), and its(j, i)-th element is

cov(Xpppt1—js Xe—pri-1) = V|ttp+1—j—t+p—i+1] = V2(p+1)—(G+i)]| *

These two terms are identical and consequedtly = A}, = As; = As. The vectorIl whose
components are the coefficients ®f,, and X;_;, 1 < k < p, in the affine regression of; on

(Btgp+1,p, Bip) is given by

n-(c C)(j; ﬁf )1.

DefineIl; andIl,, the two (1 x p) subvectors ofll whose elements are the coefficients of the
variables inBy,11,, and inB; ,, respectively. Then

C=111A; + 11 A, Al(Hl — HQ) + AQ(HQ — Hl) =0

C =1I1A5 + I, A AQ(Hl — HQ) + Al(Hg — Hl) =0

which is equivalent to

I -1l '\
() o

Assuming that the variance-covariance mairix is non singular, we must haig, = Il,. Q.E.D.
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B. Appendix: Coefficients of two-sided autoregressions for AR(1)
processes

The model is
Yi=0¢Yi1+u, t=12,...,n,
u=(ug, ...,up) ~ N(0,021,),

with Y, given. Rewritingy; = ¢'Y, + Y2 ¢'u;_; and taking expectations, we ggfV;) = ¢'Yp.
The mean deviation proce§sy; = Y; — E(Yt) :t = 1,2, ... ,n} satisfies the autoregression
Xt = oXe1 + ug.

B.1. Computation of first order moments

Define¥,5 = cov [Ygt, (Y2t+1 ,Ygt_l)/} and Uy = V[(Ygt_H ,Ygt_l)/]. From the definition of

(X; :t=1,2,...,n}, we haveX; = Y170 ¢'uy; andE(X;) = 0, E(X?) = o2 3120 ¢*.
Furthermore the autocovariances are

cov(Yari1, Yar) = E(Xopy1Xop) = 020 S o0
COV(Y2t,Y2t 1) = E(XQtX% 1) — 02¢22t 2 ¢21

cov(Yar i1, Yar 1) = E(Xopi1 Xor 1) = 0262 3702 9%,

hence
20-1 22 Z?io ¢2i ¢ ZQt 2 qbQZ
Uiy = g0, <Z ¢, Z¢2Z> , Uy =0,
=0 =0 ¢2 ZQt 2¢21 Z?t 2¢21

B.2. The affine regression of%; on (Ya:44 ,Y2t_1)' when |¢| # 1

In general we have:

_ Yoi41 — E(Y-
EL [Y2t|(}/2t+1 Ygtfl)] = E(YQt) + \1112\11221 < 2t+1 ( 2t+1) ) .

Yor1 — E(Yai-1)
Using the fact that, fofp| # 1,
k 1 ¢2(k+1)

2 =T

=0
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we obtain the following expressions:

1— At+2 2 1— 4t—2
\Ij _ ¢0—’l21, 1 o ¢4t 1 o 4t—2 \Ij _ O-QQL ¢ ¢ ( ¢ )
12_1_¢2 ’ ¢ ) 22_1_¢2 )
¢2(1 o ¢4t—2) 1— ¢4t—2
hence
Y- — E(Y5
B [Varl (Va1 Yara)] = E(YVa) + 5 (11) ( Vors — EEYZE% )

= a+ B(Yorr1 + Y1),

wherea = E(Yay) — B[E(Yari1) + E(Yor_1)] andg = ¢/(1 + ¢?). Since for allt > 0, E(Y;) =
HEYi_p), k=0,1, ... ,t,a=0.

B.3. The affine regression of%; on (Yo ,YQH)' when |¢| = 1
When|¢| = 1, we have

A+1 2t—1
Uip = ¢os(2t, 2t — 1), %Qzai(%_l 2t—1>’

henceE._ [Ygt’(Y2t+1 Ygt_l)] = %(Y2t+1 + Ygt_l) = #(Y%ﬁ-l + Ygt_l). Note that from the
derivations in the case whef@| # 1, a = 0 irrespective to the value af. In any case, the residual

variance is

2
_ os
V[Y2t — Ep [Yar|(Yars1 Yor1)] } = V(Yar) — U1205, )y = 138 ¢ € (—00,00).
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